Differentiable Functions on Normed Linear Spaces ${ }^{1}$

Yasunari Shidama
Shinshu University
Nagano, Japan

Summary. In this article, we formalize differentiability of functions on normed linear spaces. Partial derivative, mean value theorem for vector-valued functions, continuous differentiability, etc. are formalized. As it is well known, there is no exact analog of the mean value theorem for vector-valued functions. However a certain type of generalization of the mean value theorem for vectorvalued functions is obtained as follows: If $\left\|f^{\prime}(x+t \cdot h)\right\|$ is bounded for t between 0 and 1 by some constant M, then $\|f(x+t \cdot h)-f(x)\| \leq M \cdot\|h\|$. This theorem is called the mean value theorem for vector-valued functions. By this theorem, the relation between the (total) derivative and the partial derivatives of a function is derived [23].

MML identifier: NDIFF_5, version: $\underline{7.12 .014 .167 .1133}$

The notation and terminology used here have been introduced in the following papers: [28], [29], [9], [4], [30], [12], [10], [25], [11], [1], [2], [26], [7], [3], [5], [8], [17], [22], [20], [27], [21], [31], [14], [24], [18], [16], [15], [19], [13], and [6].

1. Preliminaries

In this paper r is a real number and S, T are non trivial real normed spaces. Next we state several propositions:
(1) Let R be a function from \mathbb{R} into S. Then R is rest-like if and only if for every real number r such that $r>0$ there exists a real number d such that $d>0$ and for every real number z such that $z \neq 0$ and $|z|<d$ holds $|z|^{-1} \cdot\left\|R_{z}\right\|<r$.

[^0](2) Let R be a rest of S. Suppose $R_{0}=0_{S}$. Let e be a real number. Suppose $e>0$. Then there exists a real number d such that $d>0$ and for every real number h such that $|h|<d$ holds $\left\|R_{h}\right\| \leq e \cdot|h|$.
(3) For every rest R of S and for every bounded linear operator L from S into T holds $L \cdot R$ is a rest of T.
(4) Let R_{1} be a rest of S. Suppose $\left(R_{1}\right)_{0}=0_{S}$. Let R_{2} be a rest of S, T. If $\left(R_{2}\right)_{0_{S}}=0_{T}$, then for every linear L of S holds $R_{2} \cdot\left(L+R_{1}\right)$ is a rest of T.
(5) Let R_{1} be a rest of S. Suppose $\left(R_{1}\right)_{0}=0_{S}$. Let R_{2} be a rest of S, T. Suppose $\left(R_{2}\right)_{0_{S}}=0_{T}$. Let L_{1} be a linear of S and L_{2} be a bounded linear operator from S into T. Then $L_{2} \cdot R_{1}+R_{2} \cdot\left(L_{1}+R_{1}\right)$ is a rest of T.
(6) Let x_{0} be an element of \mathbb{R} and g be a partial function from \mathbb{R} to the carrier of S. Suppose g is differentiable in x_{0}. Let f be a partial function from the carrier of S to the carrier of T. Suppose f is differentiable in $g_{x_{0}}$. Then $f \cdot g$ is differentiable in x_{0} and $(f \cdot g)^{\prime}\left(x_{0}\right)=f^{\prime}\left(g_{x_{0}}\right)\left(g^{\prime}\left(x_{0}\right)\right)$.
(7) Let S be a real normed space, x_{1} be a finite sequence of elements of S, and y_{1} be a finite sequence of elements of \mathbb{R}. Suppose len $x_{1}=\operatorname{len} y_{1}$ and for every element i of \mathbb{N} such that $i \in \operatorname{dom} x_{1}$ holds $y_{1}(i)=\left\|\left(x_{1}\right)_{i}\right\|$. Then $\left\|\sum x_{1}\right\| \leq \sum y_{1}$.
(8) Let S be a real normed space, x be a point of S, and N_{1}, N_{2} be neighbourhoods of x. Then $N_{1} \cap N_{2}$ is a neighbourhood of x.
(9) For every non-empty finite sequence X and for every set x such that $x \in \Pi X$ holds x is a finite sequence.
Let G be a real norm space sequence. One can verify that ΠG is constituted finite sequences.

Let G be a real linear space sequence, let z be an element of $\Pi \bar{G}$, and let j be an element of dom G. Then $z(j)$ is an element of $G(j)$.

One can prove the following propositions:
(10) The carrier of $\Pi G=\Pi \bar{G}$.
(11) Let i be an element of dom G, r be a set, and x be a function. If $r \in$ the carrier of $G(i)$ and $x \in \Pi \bar{G}$, then $x+\cdot(i, r) \in$ the carrier of ΠG.
Let G be a real norm space sequence. We say that G is nontrivial if and only if:
(Def. 1) For every element j of dom G holds $G(j)$ is non trivial.
Let us mention that there exists a real norm space sequence which is nontrivial.

Let G be a nontrivial real norm space sequence and let i be an element of $\operatorname{dom} G$. Note that $G(i)$ is non trivial.

Let G be a nontrivial real norm space sequence. Note that ΠG is non trivial.
The following propositions are true:
(12) Let G be a real norm space sequence, p, q be points of ΠG, and r_{0}, p_{0}, q_{0} be elements of $\Pi \bar{G}$. Suppose $p=p_{0}$ and $q=q_{0}$. Then $p+q=r_{0}$ if and only if for every element i of dom G holds $r_{0}(i)=p_{0}(i)+q_{0}(i)$.
(13) Let G be a real norm space sequence, p be a point of $\Pi G, r$ be a real number, and r_{0}, p_{0} be elements of $\Pi \bar{G}$. Suppose $p=p_{0}$. Then $r \cdot p=r_{0}$ if and only if for every element i of dom G holds $r_{0}(i)=r \cdot p_{0}(i)$.
(14) Let G be a real norm space sequence and p_{0} be an element of $\Pi \bar{G}$. Then ${ }^{0} \prod_{G}=p_{0}$ if and only if for every element i of dom G holds $p_{0}(i)=0_{G(i)}$.
(15) Let G be a real norm space sequence, p, q be points of ΠG, and r_{0}, p_{0}, q_{0} be elements of $\Pi \bar{G}$. Suppose $p=p_{0}$ and $q=q_{0}$. Then $p-q=r_{0}$ if and only if for every element i of dom G holds $r_{0}(i)=p_{0}(i)-q_{0}(i)$.

2. Mean Value Theorem for Vector-Valued Functions

Let S be a real linear space and let p, q be points of S. The functor $] p, q[$ yielding a subset of S is defined as follows:
(Def. 2) $] p, q[=\{p+t \cdot(q-p) ; t$ ranges over real numbers: $0<t \wedge t<1\}$.
Let S be a real linear space and let p, q be points of S. We introduce $[p, q]$ as a synonym of $\mathcal{L}(p, q)$.

Next we state several propositions:
(16) For every real linear space S and for all points p, q of S holds $] p, q[\subseteq$ $[p, q]$.
(17) Let T be a non trivial real normed space and R be a partial function from \mathbb{R} to T. Suppose R is total. Then R is rest-like if and only if for every real number r such that $r>0$ there exists a real number d such that $d>0$ and for every real number z such that $z \neq 0$ and $|z|<d$ holds $\frac{\|R z\|}{|z|}<r$.
(18) Let R be a function from \mathbb{R} into \mathbb{R}. Then R is rest-like if and only if for every real number r such that $r>0$ there exists a real number d such that $d>0$ and for every real number z such that $z \neq 0$ and $|z|<d$ holds $\frac{|R(z)|}{|z|}<r$.
(19) Let S, T be non trivial real normed spaces, f be a partial function from S to T, p, q be points of S, and M be a real number. Suppose that
(i) $[p, q] \subseteq \operatorname{dom} f$,
(ii) for every point x of S such that $x \in[p, q]$ holds f is continuous in x,
(iii) for every point x of S such that $x \in] p, q[$ holds f is differentiable in x, and
(iv) for every point x of S such that $x \in] p, q\left[\right.$ holds $\left\|f^{\prime}(x)\right\| \leq M$. Then $\left\|f_{q}-f_{p}\right\| \leq M \cdot\|q-p\|$.
(20) Let S, T be non trivial real normed spaces, f be a partial function from S to T, p, q be points of S, M be a real number, and L be a point of the real norm space of bounded linear operators from S into T. Suppose that
(i) $[p, q] \subseteq \operatorname{dom} f$,
(ii) for every point x of S such that $x \in[p, q]$ holds f is continuous in x,
(iii) for every point x of S such that $x \in] p, q[$ holds f is differentiable in x, and
(iv) for every point x of S such that $x \in] p, q\left[\right.$ holds $\left\|f^{\prime}(x)-L\right\| \leq M$. Then $\left\|f_{q}-f_{p}-L(q-p)\right\| \leq M \cdot\|q-p\|$.

3. Partial Derivative of a Function of Several Variables

Let G be a real norm space sequence and let i be an element of dom G. The projection onto i yielding a function from ΠG into $G(i)$ is defined by:
(Def. 3) For every element x of $\Pi \bar{G}$ holds (the projection onto $i)(x)=x(i)$.
Let G be a real norm space sequence, let i be an element of dom G, and let x be an element of ΠG. The functor reproj (i, x) yielding a function from $G(i)$ into ΠG is defined by:
(Def. 4) For every element r of $G(i)$ holds $(\operatorname{reproj}(i, x))(r)=x+\cdot(i, r)$.
Let G be a nontrivial real norm space sequence and let j be a set. Let us assume that $j \in \operatorname{dom} G$. The functor modetrans (G, j) yields an element of dom G and is defined by:
(Def. 5) $\operatorname{modetrans}(G, j)=j$.
Let G be a nontrivial real norm space sequence, let F be a non trivial real normed space, let i be a set, let f be a partial function from ΠG to F, and let x be an element of ΠG. We say that f is partially differentiable in x w.r.t. i if and only if:
(Def. 6) $f \cdot \operatorname{reproj}(\operatorname{modetrans}(G, i), x)$ is differentiable in (the projection onto modetrans $(G, i))(x)$.
Let G be a nontrivial real norm space sequence, let F be a non trivial real normed space, let i be a set, let f be a partial function from ΠG to F, and let x be a point of ΠG. The functor partdiff (f, x, i) yielding a point of the real norm space of bounded linear operators from $G(\operatorname{modetrans}(G, i))$ into F is defined as follows:
(Def. 7) partdiff $(f, x, i)=(f \cdot \operatorname{reproj}(\operatorname{modetrans}(G, i), x))^{\prime}(($ the projection onto modetrans $(G, i))(x)$).

4. Linearity of Partial Differential Operator

For simplicity, we adopt the following rules: G denotes a nontrivial real norm space sequence, F denotes a non trivial real normed space, i denotes an element of dom G, f, f_{1}, f_{2} denote partial functions from ΠG to F, x denotes a point of ΠG, and X denotes a set.

Let G be a nontrivial real norm space sequence, let F be a non trivial real normed space, let i be a set, let f be a partial function from ΠG to F, and let X be a set. We say that f is partially differentiable on X w.r.t. i if and only if:
(Def. 8) $\quad X \subseteq \operatorname{dom} f$ and for every point x of ΠG such that $x \in X$ holds $f \upharpoonright X$ is partially differentiable in x w.r.t. i.
Next we state several propositions:
(21) For every element x_{2} of $G(i)$ holds $\left\|\left(\operatorname{reproj}\left(i, 0{ }_{\Pi}{ }_{G}\right)\right)\left(x_{2}\right)\right\|=\left\|x_{2}\right\|$.
(22) Let G be a nontrivial real norm space sequence, i be an element of dom G, x be a point of ΠG, and r be a point of $G(i)$. Then $(\operatorname{reproj}(i, x))(r)-x=$ $\left(\operatorname{reproj}\left(i, 0{ }_{\Pi}{ }^{G}\right)\right)(r-($ the projection onto $i)(x))$ and $x-(\operatorname{reproj}(i, x))(r)=$ $\left(\operatorname{reproj}\left(i, 0 \prod_{G}\right)\right)(($ the projection onto $i)(x)-r)$.
(23) Let G be a nontrivial real norm space sequence, i be an element of dom G, x be a point of ΠG, and Z be a subset of ΠG. Suppose Z is open and $x \in Z$. Then there exists a neighbourhood N of (the projection onto $i)(x)$ such that for every point z of $G(i)$ if $z \in N$, then $(\operatorname{reproj}(i, x))(z) \in Z$.
(24) Let G be a nontrivial real norm space sequence, T be a non trivial real normed space, i be a set, f be a partial function from ΠG to T, and Z be a subset of ΠG. Suppose Z is open. Then f is partially differentiable on Z w.r.t. i if and only if $Z \subseteq \operatorname{dom} f$ and for every point x of ΠG such that $x \in Z$ holds f is partially differentiable in x w.r.t. i.
(25) For every set i such that $i \in \operatorname{dom} G$ and f is partially differentiable on X w.r.t. i holds X is a subset of ΠG.
Let G be a nontrivial real norm space sequence, let S be a non trivial real normed space, and let i be a set. Let us assume that $i \in \operatorname{dom} G$. Let f be a partial function from ΠG to S and let X be a set. Let us assume that f is partially differentiable on X w.r.t. i. The functor $f \upharpoonright^{i} X$ yields a partial function from ΠG to the real norm space of bounded linear operators from G (modetrans (G, i)) into S and is defined by:
(Def. 9) $\operatorname{dom}\left(f \upharpoonright^{i} X\right)=X$ and for every point x of ΠG such that $x \in X$ holds $\left(f \upharpoonright^{i} X\right)_{x}=\operatorname{partdiff}(f, x, i)$.
One can prove the following propositions:
(26) For every set i such that $i \in \operatorname{dom} G$ holds $\left(f_{1}+f_{2}\right)$. $\operatorname{reproj}(\operatorname{modetrans}(G, i), x)=f_{1} \cdot \operatorname{reproj}(\operatorname{modetrans}(G, i), x)+f_{2}$.
$\operatorname{reproj}(\operatorname{modetrans}(G, i), x)$ and $\left(f_{1}-f_{2}\right) \cdot \operatorname{reproj}(\operatorname{modetrans}(G, i), x)=$ $f_{1} \cdot \operatorname{reproj}(\operatorname{modetrans}(G, i), x)-f_{2} \cdot \operatorname{reproj}(\operatorname{modetrans}(G, i), x)$.
(27) For every set i such that $i \in \operatorname{dom} G$ holds $r \cdot(f \cdot \operatorname{reproj}(\operatorname{modetrans}(G, i), x))=$ $(r \cdot f) \cdot \operatorname{reproj}(\operatorname{modetrans}(G, i), x)$.
(28) Let i be a set. Suppose $i \in \operatorname{dom} G$ and f_{1} is partially differentiable in x w.r.t. i and f_{2} is partially differentiable in x w.r.t. i. Then $f_{1}+f_{2}$ is partially differentiable in x w.r.t. i and partdiff $\left(f_{1}+f_{2}, x, i\right)=\operatorname{partdiff}\left(f_{1}, x, i\right)+$ partdiff $\left(f_{2}, x, i\right)$.
(29) Let i be a set. Suppose $i \in \operatorname{dom} G$ and f_{1} is partially differentiable in x w.r.t. i and f_{2} is partially differentiable in x w.r.t. i. Then $f_{1}-f_{2}$ is partially differentiable in x w.r.t. i and partdiff $\left(f_{1}-f_{2}, x, i\right)=\operatorname{partdiff}\left(f_{1}, x, i\right)-$ partdiff $\left(f_{2}, x, i\right)$.
(30) Let i be a set. Suppose $i \in \operatorname{dom} G$ and f is partially differentiable in x w.r.t. i. Then $r \cdot f$ is partially differentiable in x w.r.t. i and partdiff $(r$. $f, x, i)=r \cdot \operatorname{partdiff}(f, x, i)$.

5. Continuous Differentiatibility of Partial Derivative

Next we state the proposition
(31) $\|$ (the projection onto $i)(x)\|\leq\| x \|$.

Let G be a nontrivial real norm space sequence. One can verify that every point of ΠG is len G-element.

We now state a number of propositions:
(32) Let G be a nontrivial real norm space sequence, T be a non trivial real normed space, i be a set, Z be a subset of ΠG, and f be a partial function from ΠG to T. Suppose Z is open. Then f is partially differentiable on Z w.r.t. i if and only if $Z \subseteq \operatorname{dom} f$ and for every point x of ΠG such that $x \in Z$ holds f is partially differentiable in x w.r.t. i.
(33) Let i, j be elements of dom G, x be a point of $G(i)$, and z be an element of $\Pi \bar{G}$ such that $z=(\operatorname{reproj}(i, 0 \Pi G))(x)$. Then
(i) if $i=j$, then $z(j)=x$, and
(ii) if $i \neq j$, then $z(j)=0_{G(j)}$.
(34) For all points x, y of $G(i)$ holds $\left(\operatorname{reproj}\left(i, 0 \prod_{G}\right)\right)(x+y)=$ $\left(\operatorname{reproj}\left(i, 0{ }_{\Pi}{ }_{G}\right)\right)(x)+\left(\operatorname{reproj}\left(i, 0{ }_{\Pi}{ }_{G}\right)\right)(y)$.
(35) Let x, y be points of ΠG. Then (the projection onto $i)(x+y)=($ the projection onto $i)(x)+($ the projection onto $i)(y)$.
(36) For all points x, y of $G(i)$ holds $(\operatorname{reproj}(i, 0 \Pi G))(x-y)=$ $\left(\operatorname{reproj}\left(i, 0{ }_{\Pi}{ }_{G}\right)\right)(x)-\left(\operatorname{reproj}\left(i, 0{ }^{0}{ }_{G}\right)\right)(y)$.
(37) Let x, y be points of ΠG. Then (the projection onto $i)(x-y)=($ the projection onto $i)(x)$ - (the projection onto $i)(y)$.
(38) For every point x of $G(i)$ such that $x \neq 0_{G(i)}$ holds $\left(\operatorname{reproj}\left(i, 0 \prod_{G}\right)\right)(x) \neq$ ${ }^{0} \Pi{ }^{G}$.
(39) For every point x of $G(i)$ and for every element a of \mathbb{R} holds $\left(\operatorname{reproj}\left(i,{ }^{0} \prod_{G}\right)\right)(a \cdot x)=a \cdot\left(\operatorname{reproj}\left(i,{ }^{0} \prod_{G}\right)\right)(x)$.
(40) Let x be a point of ΠG and a be an element of \mathbb{R}. Then (the projection onto $i)(a \cdot x)=a \cdot($ the projection onto $i)(x)$.
(41) Let G be a nontrivial real norm space sequence, S be a non trivial real normed space, f be a partial function from ΠG to S, x be a point of ΠG, and i be a set. Suppose f is differentiable in x. Then f is partially differentiable in x w.r.t. i and $\operatorname{partdiff}(f, x, i)=f^{\prime}(x)$. reproj(modetrans $\left.(G, i),{ }^{0} \prod_{G}\right)$.
(42) Let S be a real normed space and h, g be finite sequences of elements of S. Suppose len $h=\operatorname{len} g+1$ and for every natural number i such that $i \in \operatorname{dom} g$ holds $g_{i}=h_{i}-h_{i+1}$. Then $h_{1}-h_{\operatorname{len} h}=\sum g$.
(43) Let G be a nontrivial real norm space sequence, x, y be elements of $\Pi \bar{G}$, and Z be a set. Then $x+\cdot y \upharpoonright Z$ is an element of $\Pi \bar{G}$.
(44) Let G be a nontrivial real norm space sequence, x, y be points of ΠG, Z, x_{0} be elements of $\Pi \bar{G}$, and X be a set. If $Z=0 \prod_{G}$ and $x_{0}=x$ and $y=Z+\cdot x_{0} \upharpoonright X$, then $\|y\| \leq\|x\|$.
(45) Let G be a nontrivial real norm space sequence, S be a non trivial real normed space, f be a partial function from ΠG to S, and x, y be points of ΠG. Then there exists a finite sequence h of elements of ΠG and there exists a finite sequence g of elements of S and there exist elements Z, y_{0} of $\Pi \bar{G}$ such that
$y_{0}=y$ and $Z={ }^{0} \prod_{G}$ and len $h=\operatorname{len} G+1$ and len $g=\operatorname{len} G$ and for every natural number i such that $i \in \operatorname{dom} h$ holds $h_{i}=Z+y_{0} \upharpoonright \operatorname{Seg}\left((\operatorname{len} G+1)-^{\prime}\right.$ $i)$ and for every natural number i such that $i \in \operatorname{dom} g$ holds $g_{i}=f_{x+h_{i}}-$ $f_{x+h_{i+1}}$ and for every natural number i and for every point h_{1} of ΠG such that $i \in \operatorname{dom} h$ and $h_{i}=h_{1}$ holds $\left\|h_{1}\right\| \leq\|y\|$ and $f_{x+y}-f_{x}=\sum g$.
(46) Let G be a nontrivial real norm space sequence, i be an element of dom G, x, y be points of ΠG, and x_{2} be a point of $G(i)$. If $y=(\operatorname{reproj}(i, x))\left(x_{2}\right)$, then (the projection onto $i)(y)=x_{2}$.
(47) Let G be a nontrivial real norm space sequence, i be an element of dom G, y be a point of ΠG, and q be a point of $G(i)$. If $q=$ (the projection onto $i)(y)$, then $y=(\operatorname{reproj}(i, y))(q)$.
(48) Let G be a nontrivial real norm space sequence, i be an element of dom G, x, y be points of ΠG, and x_{2} be a point of $G(i)$. If $y=(\operatorname{reproj}(i, x))\left(x_{2}\right)$, then $\operatorname{reproj}(i, x)=\operatorname{reproj}(i, y)$.
(49) Let G be a nontrivial real norm space sequence, i, j be elements of $\operatorname{dom} G, x, y$ be points of ΠG, and x_{2} be a point of $G(i)$. Suppose $y=(\operatorname{reproj}(i, x))\left(x_{2}\right)$ and $i \neq j$. Then (the projection onto $\left.j\right)(x)=($ the projection onto $j)(y)$.
(50) Let G be a nontrivial real norm space sequence, F be a non trivial real normed space, i be an element of dom G, x be a point of $\Pi G, x_{2}$ be a point of $G(i), f$ be a partial function from ΠG to F, and g be a partial function from $G(i)$ to F. If (the projection onto $i)(x)=x_{2}$ and $g=f \cdot \operatorname{reproj}(i, x)$, then $g^{\prime}\left(x_{2}\right)=\operatorname{partdiff}(f, x, i)$.
(51) Let G be a nontrivial real norm space sequence, F be a non trivial real normed space, f be a partial function from ΠG to F, x be a point of $\Pi G, i$ be a set, M be a real number, L be a point of the real norm space of bounded linear operators from G (modetrans $(G, i))$ into F, and p, q be points of G (modetrans $(G, i))$. Suppose that
(i) $i \in \operatorname{dom} G$,
(ii) for every point h of $G(\operatorname{modetrans}(G, i))$ such that $h \in] p, q[$ holds $\|\operatorname{partdiff}(f,(\operatorname{reproj}(\operatorname{modetrans}(G, i), x))(h), i)-L\| \leq M$,
(iii) for every point h of G (modetrans $(G, i))$ such that $h \in[p, q]$ holds $(\operatorname{reproj}(\operatorname{modetrans}(G, i), x))(h) \in \operatorname{dom} f$, and
(iv) for every point h of G (modetrans $(G, i))$ such that $h \in[p, q]$ holds f is partially differentiable in $(\operatorname{reproj}(\operatorname{modetrans}(G, i), x))(h)$ w.r.t. i.
Then $\left\|f_{(\operatorname{reproj}(\operatorname{modetrans}(G, i), x))(q)}-f_{(\operatorname{reproj}(\operatorname{modetrans}(G, i), x))(p)}-L(q-p)\right\| \leq$ $M \cdot\|q-p\|$.
(52) Let G be a nontrivial real norm space sequence, x, y, z, w be points of $\Pi G, i$ be an element of $\operatorname{dom} G, d$ be a real number, and p, q, r be points of $G(i)$. Suppose $\|y-x\|<d$ and $\|z-x\|<d$ and $p=$ (the projection onto $i)(y)$ and $z=(\operatorname{reproj}(i, y))(q)$ and $r \in[p, q]$ and $w=(\operatorname{reproj}(i, y))(r)$. Then $\|w-x\|<d$.
(53) Let G be a nontrivial real norm space sequence, S be a non trivial real normed space, f be a partial function from ΠG to S, X be a subset of ΠG, x, y, z be points of $\Pi G, i$ be a set, p, q be points of $G(\operatorname{modetrans}(G, i))$, and d, r be real numbers. Suppose that $i \in \operatorname{dom} G$ and X is open and $x \in$ X and $\|y-x\|<d$ and $\|z-x\|<d$ and $X \subseteq \operatorname{dom} f$ and for every point x of ΠG such that $x \in X$ holds f is partially differentiable in x w.r.t. i and for every point z of ΠG such that $\|z-x\|<d$ holds $z \in X$ and for every point z of ΠG such that $\|z-x\|<d$ holds $\|$ partdiff $(f, z, i)-\operatorname{partdiff}(f, x, i) \| \leq$ r and $z=(\operatorname{reproj}(\operatorname{modetrans}(G, i), y))(p)$ and $q=($ the projection onto $\operatorname{modetrans}(G, i))(y)$. Then $\left\|f_{z}-f_{y}-(\operatorname{partdiff}(f, x, i))(p-q)\right\| \leq\|p-q\| \cdot r$.
(54) Let G be a nontrivial real norm space sequence, h be a finite sequence of elements of $\Pi G, y, x$ be points of $\Pi G, y_{0}, Z$ be elements of $\Pi \bar{G}$, and j be an element of \mathbb{N}. Suppose $y=y_{0}$ and $Z=0{ }^{0}{ }^{G}$ and
len $h=\operatorname{len} G+1$ and $1 \leq j \leq \operatorname{len} G$ and for every natural number i such that $i \in \operatorname{dom} h$ holds $h_{i}=Z+\cdot y_{0} \upharpoonright \operatorname{Seg}\left((\operatorname{len} G+1)-^{\prime} i\right)$. Then $x+h_{j}=\left(\operatorname{reproj}\left(\operatorname{modetrans}\left(G,(\operatorname{len} G+1)-^{\prime} j\right), x+h_{j+1}\right)\right)(($ the projection onto modetrans $\left.\left.\left(G,(\operatorname{len} G+1)-^{\prime} j\right)\right)(x+y)\right)$.
(55) Let G be a nontrivial real norm space sequence, h be a finite sequence of elements of $\Pi G, y, x$ be points of $\Pi G, y_{0}, Z$ be elements of $\Pi \bar{G}$, and j be an element of \mathbb{N}. Suppose $y=y_{0}$ and $Z={ }^{0} \prod_{G}$ and len $h=\operatorname{len} G+1$ and $1 \leq j \leq \operatorname{len} G$ and for every natural number i such that $i \in \operatorname{dom} h$ holds $h_{i}=Z+\cdot y_{0} \upharpoonright \operatorname{Seg}\left((\operatorname{len} G+1)-^{\prime} i\right)$. Then (the projection onto modetrans $\left.\left(G,(\operatorname{len} G+1)-^{\prime} j\right)\right)(x+y)-($ the projection onto $\left.\operatorname{modetrans}\left(G,(\operatorname{len} G+1)-^{\prime} j\right)\right)\left(x+h_{j+1}\right)=($ the projection onto $\left.\operatorname{modetrans}\left(G,(\operatorname{len} G+1)-^{\prime} j\right)\right)(y)$.
(56) Let G be a nontrivial real norm space sequence, S be a non trivial real normed space, f be a partial function from ΠG to S, X be a subset of ΠG, and x be a point of ΠG. Suppose that
(i) X is open,
(ii) $x \in X$, and
(iii) for every set i such that $i \in \operatorname{dom} G$ holds f is partially differentiable on X w.r.t. i and $f \upharpoonright^{i} X$ is continuous on X.
Then
(iv) f is differentiable in x, and
(v) for every point h of ΠG there exists a finite sequence w of elements of S such that $\operatorname{dom} w=\operatorname{dom} G$ and for every set i such that $i \in \operatorname{dom} G$ holds $w(i)=(\operatorname{partdiff}(f, x, i))(($ the projection onto modetrans $(G, i))(h))$ and $f^{\prime}(x)(h)=\sum w$.
(57) Let G be a nontrivial real norm space sequence, F be a non trivial real normed space, f be a partial function from ΠG to F, and X be a subset of ΠG. Suppose X is open. Then for every set i such that $i \in \operatorname{dom} G$ holds f is partially differentiable on X w.r.t. i and $f \upharpoonright^{i} X$ is continuous on X if and only if f is differentiable on X and $f_{\lceil X}^{\prime}$ is continuous on X.

References

[1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.
[2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[3] Grzegorz Bancerek. König's theorem. Formalized Mathematics, 1(3):589-593, 1990.
[4] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
[5] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[6] Grzegorz Bancerek and Andrzej Trybulec. Miscellaneous facts about functions. Formalized Mathematics, 5(4):485-492, 1996.
[7] Czesław Byliński. The complex numbers. Formalized Mathematics, 1(3):507-513, 1990.
[8] Czesław Bylinski. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.
[9] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[10] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[11] Czesław Bylinski. The modification of a function by a function and the iteration of the composition of a function. Formalized Mathematics, 1(3):521-527, 1990.
[12] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
[13] Czesław Byliński. Introduction to real linear topological spaces. Formalized Mathematics, 13(1):99-107, 2005.
[14] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991.
[15] Noboru Endou, Yasunari Shidama, and Keiichi Miyajima. The product space of real normed spaces and its properties. Formalized Mathematics, 15(3):81-85, 2007, doi:10.2478/v10037-007-0010-y.
[16] Hiroshi Imura, Morishige Kimura, and Yasunari Shidama. The differentiable functions on normed linear spaces. Formalized Mathematics, 12(3):321-327, 2004.
[17] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.
[18] Anna Lango and Grzegorz Bancerek. Product of families of groups and vector spaces. Formalized Mathematics, 3(2):235-240, 1992.
[19] Hiroyuki Okazaki, Noboru Endou, Keiko Narita, and Yasunari Shidama. Differentiable functions into real normed spaces. Formalized Mathematics, 19(2):69-72, 2011, doi: 10.2478/v10037-011-0012-7.
[20] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990.
[21] Jan Popiołek. Real normed space. Formalized Mathematics, 2(1):111-115, 1991.
[22] Konrad Raczkowski and Paweł Sadowski. Real function differentiability. Formalized Mathematics, 1(4):797-801, 1990.
[23] Laurent Schwartz. Cours d'analyse, vol. 1. Hermann Paris, 1967.
[24] Yasunari Shidama. Banach space of bounded linear operators. Formalized Mathematics, 12(1):39-48, 2004.
[25] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329-334, 1990.
[26] Andrzej Trybulec. On the sets inhabited by numbers. Formalized Mathematics, 11(4):341347, 2003.
[27] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990.
[28] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[29] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
[30] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.
[31] Hiroshi Yamazaki and Yasunari Shidama. Algebra of vector functions. Formalized Mathematics, 3(2):171-175, 1992.

Received June 2, 2011

[^0]: ${ }^{1}$ This work was supported by JSPS KAKENHI 22300285.

