The Mycielskian of a Graph ${ }^{1}$

Piotr Rudnicki
University of Alberta
Edmonton, Canada

Lorna Stewart
University of Alberta
Edmonton, Canada

Summary. Let $\omega(G)$ and $\chi(G)$ be the clique number and the chromatic number of a graph G. Mycielski [11] presented a construction that for any n creates a graph M_{n} which is triangle-free $(\omega(G)=2)$ with $\chi(G)>n$. The starting point is the complete graph of two vertices $\left(K_{2}\right) . M_{(n+1)}$ is obtained from M_{n} through the operation $\mu(G)$ called the Mycielskian of a graph G.

We first define the operation $\mu(G)$ and then show that $\omega(\mu(G))=\omega(G)$ and $\chi(\mu(G))=\chi(G)+1$. This is done for arbitrary graph G, see also [10]. Then we define the sequence of graphs M_{n} each of exponential size in n and give their clique and chromatic numbers.

MML identifier: MYCIELSK, version: $\underline{7.11 .074 .156 .1112}$

The notation and terminology used here have been introduced in the following papers: [1], [15], [13], [8], [5], [2], [14], [9], [16], [3], [6], [18], [19], [12], [17], [4], and $[7]$.

1. Preliminaries

One can prove the following propositions:
(1) For all real numbers x, y, z such that $0 \leq x$ holds $x \cdot\left(y-^{\prime} z\right)=x \cdot y-^{\prime} x \cdot z$.
(2) For all natural numbers x, y, z holds $x \in y \backslash z$ iff $z \leq x<y$.
(3) For all sets A, B, C, D, E, X such that $X \subseteq A$ or $X \subseteq B$ or $X \subseteq C$ or $X \subseteq D$ or $X \subseteq E$ holds $X \subseteq A \cup B \cup C \cup D \cup E$.
(4) For all sets A, B, C, D, E, x holds $x \in A \cup B \cup C \cup D \cup E$ iff $x \in A$ or $x \in B$ or $x \in C$ or $x \in D$ or $x \in E$.

[^0](5) Let R be a symmetric relational structure and x, y be sets. Suppose $x \in$ the carrier of R and $y \in$ the carrier of R and $\langle x, y\rangle \in$ the internal relation of R. Then $\langle y, x\rangle \in$ the internal relation of R.
(6) For every symmetric relational structure R and for all elements x, y of R such that $x \leq y$ holds $y \leq x$.

2. Partitions

One can prove the following proposition
(7) For every set X and for every partition P of X holds $\overline{\bar{P}} \subseteq \overline{\bar{X}}$.

Let X be a set, let P be a partition of X, and let S be a subset of X. The functor $P \upharpoonright S$ yields a partition of S and is defined by:
(Def. 1) $\quad P \upharpoonright S=\{x \cap S ; x$ ranges over elements of $P: x$ meets $S\}$.
Let X be a set. Observe that there exists a partition of X which is finite.
Let X be a set, let P be a finite partition of X, and let S be a subset of X. Observe that $P \upharpoonright S$ is finite.

One can prove the following propositions:
(8) For every set X and for every finite partition P of X and for every subset S of X holds $\overline{\overline{P\lceil S}} \leq \overline{\bar{P}}$.
(9) Let X be a set, P be a finite partition of X, and S be a subset of X. Then for every set p such that $p \in P$ holds p meets S if and only if $\overline{\overline{P \upharpoonright S}}=\overline{\bar{P}}$.
(10) Let R be a relational structure, C be a coloring of R, and S be a subset of R. Then $C \upharpoonright S$ is a coloring of $\operatorname{sub}(S)$.

3. Chromatic Number and Clique Cover Number

Let R be a relational structure. We say that R is finitely colorable if and only if:
(Def. 2) There exists a coloring of R which is finite.
One can check that there exists a relational structure which is finitely colorable.

Let us observe that every relational structure which is finite is also finitely colorable.

Let R be a finitely colorable relational structure. Observe that there exists a coloring of R which is finite.

Let R be a finitely colorable relational structure and let S be a subset of R. One can verify that $\operatorname{sub}(S)$ is finitely colorable.

Let R be a finitely colorable relational structure. The functor $\chi(R)$ yielding a natural number is defined by:
(Def. 3) There exists a finite coloring C of R such that $\overline{\bar{C}}=\chi(R)$ and for every finite coloring C of R holds $\chi(R) \leq \overline{\bar{C}}$.
Let R be an empty relational structure. Observe that $\chi(R)$ is empty.
Let R be a non empty finitely colorable relational structure. Observe that $\chi(R)$ is positive.

Let R be a relational structure. We say that R has finite clique cover if and only if:
(Def. 4) There exists a clique-partition of R which is finite.
One can verify that there exists a relational structure which has finite clique cover.

One can verify that every relational structure which is finite has also finite clique cover.

Let R be a relational structure with finite clique cover. Observe that there exists a clique-partition of R which is finite.

Let R be a relational structure with finite clique cover and let S be a subset of R. Observe that $\operatorname{sub}(S)$ has finite clique cover.

Let R be a relational structure with finite clique cover. The functor $\kappa(R)$ yielding a natural number is defined by:
(Def. 5) There exists a finite clique-partition C of R such that $\overline{\bar{C}}=\kappa(R)$ and for every finite clique-partition C of R holds $\kappa(R) \leq \overline{\bar{C}}$.
Let R be an empty relational structure. One can check that $\kappa(R)$ is empty.
Let R be a non empty relational structure with finite clique cover. One can verify that $\kappa(R)$ is positive.

We now state several propositions:
(11) For every finite relational structure R holds $\omega(R) \leq \overline{\overline{\text { the carrier of } R}}$.
(12) For every finite relational structure R holds $\alpha(R) \leq \overline{\overline{\text { the carrier of } R}}$.

(14) For every finite relational structure R holds $\kappa(R) \leq \overline{\overline{\text { the carrier of } R}}$.
(15) For every finitely colorable relational structure R with finite clique number holds $\omega(R) \leq \chi(R)$.
(16) For every relational structure R with finite stability number and finite clique cover holds $\alpha(R) \leq \kappa(R)$.

4. Complement

The following two propositions are true:
(17) Let R be a relational structure, x, y be elements of R, and a, b be elements of ComplRelStr R. If $x=a$ and $y=b$ and $x \leq y$, then $a \not \leq b$.
(18) Let R be a relational structure, x, y be elements of R, and a, b be elements of ComplRelStr R. If $x=a$ and $y=b$ and $x \neq y$ and $x \in$ the carrier of R and $a \not \leq b$, then $x \leq y$.
Let R be a finite relational structure. Note that ComplRelStr R is finite.
Next we state four propositions:
(19) For every symmetric relational structure R holds every clique of R is a stable set of ComplRelStr R.
(20) For every symmetric relational structure R holds every clique of ComplRelStr R is a stable set of R.
(21) For every relational structure R holds every stable set of R is a clique of ComplRelStr R.
(22) For every relational structure R holds every stable set of ComplRelStr R is a clique of R.
Let R be a relational structure with finite clique number.
One can verify that ComplRelStr R has finite stability number.
Let R be a symmetric relational structure with finite stability number. Observe that ComplRelStr R has finite clique number.

The following propositions are true:
(23) For every symmetric relational structure R with finite clique number holds $\omega(R)=\alpha(\operatorname{ComplRelStr} R)$.
(24) For every symmetric relational structure R with finite stability number holds $\alpha(R)=\omega($ ComplRelStr $R)$.
(25) For every relational structure R holds every coloring of R is a cliquepartition of ComplRelStr R.
(26) For every symmetric relational structure R holds every clique-partition of ComplRelStr R is a coloring of R.
(27) For every symmetric relational structure R holds every clique-partition of R is a coloring of ComplRelStr R.
(28) For every relational structure R holds every coloring of ComplRelStr R is a clique-partition of R.
Let R be a finitely colorable relational structure.
Observe that ComplRelStr R has finite clique cover.
Let R be a symmetric relational structure with finite clique cover. One can check that ComplRelStr R is finitely colorable.

The following propositions are true:
(29) For every finitely colorable symmetric relational structure R holds $\chi(R)=\kappa($ ComplRelStr $R)$.
(30) For every symmetric relational structure R with finite clique cover holds $\kappa(R)=\chi($ ComplRelStr $R)$.

5. Adjacent Set

Let R be a relational structure and let v be an element of R. The functor Adjacent (v) yields a subset of R and is defined as follows:
(Def. 6) For every element x of R holds $x \in \operatorname{Adjacent}(v)$ iff $x<v$ or $v<x$.
The following proposition is true
(31) Let R be a finitely colorable relational structure, C be a finite coloring of R, and c be a set. Suppose $c \in C$ and $\overline{\bar{C}}=\chi(R)$. Then there exists an element v of R such that $v \in c$ and for every element d of C such that $d \neq c$ there exists an element w of R such that $w \in \operatorname{Adjacent}(v)$ and $w \in d$.

6. Natural Numbers as Vertices

Let n be a natural number. A strict relational structure is said to be a relational structure of n if:
(Def. 7) The carrier of it $=n$.
Let us observe that every relational structure of 0 is empty.
Let n be a non empty natural number. Note that every relational structure of n is non empty.

Let n be a natural number. Note that every relational structure of n is finite and there exists a relational structure of n which is irreflexive.

Let n be a natural number. The functor $K(n)$ yields a relational structure of n and is defined as follows:
(Def. 8) The internal relation of $K(n)=n \times n \backslash \mathrm{id}_{n}$.
The following proposition is true
(32) Let n be a natural number and x, y be sets. Suppose $x, y \in n$. Then $\langle x$, $y\rangle \in$ the internal relation of $K(n)$ if and only if $x \neq y$.
Let n be a natural number. Note that $K(n)$ is irreflexive and symmetric.
Let n be a natural number. Observe that $\Omega_{K(n)}$ is a clique.
The following propositions are true:
(33) For every natural number n holds $\omega(K(n))=n$.
(34) For every non empty natural number n holds $\alpha(K(n))=1$.
(35) For every natural number n holds $\chi(K(n))=n$.
(36) For every non empty natural number n holds $\kappa(K(n))=1$.

7. Mycielskian of a Graph

Let n be a natural number and let R be a relational structure of n. The functor Mycielskian R yields a relational structure of $2 \cdot n+1$ and is defined by the condition (Def. 9).
(Def. 9) The internal relation of Mycielskian $R=($ the internal relation of $R) \cup$ $\{\langle x, y+n\rangle ; x$ ranges over elements of \mathbb{N}, y ranges over elements of $\mathbb{N}:\langle x$, $y\rangle \in$ the internal relation of $R\} \cup\{\langle x+n, y\rangle ; x$ ranges over elements of \mathbb{N}, y ranges over elements of $\mathbb{N}:\langle x, y\rangle \in$ the internal relation of $R\} \cup\{2 \cdot n\} \times$ $(2 \cdot n \backslash n) \cup(2 \cdot n \backslash n) \times\{2 \cdot n\}$.
One can prove the following propositions:
(37) Let n be a natural number and R be a relational structure of n. Then the carrier of $R \subseteq$ the carrier of Mycielskian R.
(38) Let n be a natural number, R be a relational structure of n, and x, y be natural numbers. Suppose $\langle x, y\rangle \in$ the internal relation of Mycielskian R. Then
(i) $x<n$ and $y<n$, or
(ii) $x<n \leq y<2 \cdot n$, or
(iii) $n \leq x<2 \cdot n$ and $y<n$, or
(iv) $x=2 \cdot n$ and $n \leq y<2 \cdot n$, or
(v) $n \leq x<2 \cdot n$ and $y=2 \cdot n$.
(39) Let n be a natural number and R be a relational structure of n. Then the internal relation of $R \subseteq$ the internal relation of Mycielskian R.
(40) Let n be a natural number, R be a relational structure of n, and x, y be sets. Suppose $x, y \in n$ and $\langle x, y\rangle \in$ the internal relation of Mycielskian R. Then $\langle x, y\rangle \in$ the internal relation of R.
(41) Let n be a natural number, R be a relational structure of n, and x, y be natural numbers. Suppose $\langle x, y\rangle \in$ the internal relation of R. Then $\langle x, y+n\rangle \in$ the internal relation of Mycielskian R and $\langle x+n, y\rangle \in$ the internal relation of Mycielskian R.
(42) Let n be a natural number, R be a relational structure of n, and x, y be natural numbers. Suppose $x \in n$ and $\langle x, y+n\rangle \in$ the internal relation of Mycielskian R. Then $\langle x, y\rangle \in$ the internal relation of R.
(43) Let n be a natural number, R be a relational structure of n, and x, y be natural numbers. Suppose $y \in n$ and $\langle x+n, y\rangle \in$ the internal relation of Mycielskian R. Then $\langle x, y\rangle \in$ the internal relation of R.
(44) Let n be a natural number, R be a relational structure of n, and m be a natural number. Suppose $n \leq m<2 \cdot n$. Then $\langle m, 2 \cdot n\rangle \in$ the internal relation of Mycielskian R and $\langle 2 \cdot n, m\rangle \in$ the internal relation of Mycielskian R.
(45) Let n be a natural number, R be a relational structure of n, and S be a subset of Mycielskian R. If $S=n$, then $R=\operatorname{sub}(S)$.
(46) For every natural number n and for every irreflexive relational structure R of n such that $2 \leq \omega(R)$ holds $\omega(R)=\omega($ Mycielskian $R)$.
(47) For every finitely colorable relational structure R and for every subset S of R holds $\chi(R) \geq \chi(\operatorname{sub}(S))$.
(48) For every natural number n and for every irreflexive relational structure R of n holds $\chi($ Mycielskian $R)=1+\chi(R)$.
Let n be a natural number. The functor Mycielskian n yielding a relational structure of $3 \cdot 2^{n}-^{\prime} 1$ is defined by the condition (Def. 10).
(Def. 10) There exists a function m_{1} such that
(i) Mycielskian $n=m_{1}(n)$,
(ii) $\operatorname{dom} m_{1}=\mathbb{N}$,
(iii) $\quad m_{1}(0)=K(2)$, and
(iv) for every natural number k and for every relational structure R of $3 \cdot 2^{k}-^{\prime} 1$ such that $R=m_{1}(k)$ holds $m_{1}(k+1)=$ Mycielskian R.
The following proposition is true
(49) Mycielskian $0=K(2)$ and for every natural number k holds $\operatorname{Mycielskian}(k+1)=$ Mycielskian Mycielskian k.
Let n be a natural number. One can verify that Mycielskian n is irreflexive.
Let n be a natural number. Observe that Mycielskian n is symmetric.
We now state three propositions:
(50) For every natural number n holds $\omega(\operatorname{Mycielskian} n)=2$ and $\chi($ Mycielskian $n)=n+2$.
(51) For every natural number n there exists a finite relational structure R such that $\omega(R)=2$ and $\chi(R)>n$.
(52) For every natural number n there exists a finite relational structure R such that $\alpha(R)=2$ and $\kappa(R)>n$.

References

[1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.
[2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[3] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
[4] Grzegorz Bancerek. Bounds in posets and relational substructures. Formalized Mathematics, 6(1):81-91, 1997.
[5] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[6] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
[7] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
[8] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
[9] Rafał Kwiatek. Factorial and Newton coefficients. Formalized Mathematics, 1(5):887-890, 1990.
[10] M. Larsen, J. Propp, and D. Ullman. The fractional chromatic number of Mycielski's graphs. Journal of Graph Theory, 19:411-416, 1995.
[11] J. Mycielski. Sur le coloriage des graphes. Colloquium Mathematicum, 3:161-162, 1955.
[12] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147-152, 1990.
[13] Konrad Raczkowski and Paweł Sadowski. Equivalence relations and classes of abstraction. Formalized Mathematics, 1(3):441-444, 1990.
[14] Krzysztof Retel. The class of series - parallel graphs. Part I. Formalized Mathematics, 11(1):99-103, 2003.
[15] Piotr Rudnicki. Dilworth's decomposition theorem for posets. Formalized Mathematics, 17(4):223-232, 2009, doi: 10.2478/v10037-009-0028-4.
[16] Wojciech A. Trybulec and Grzegorz Bancerek. Kuratowski - Zorn lemma. Formalized Mathematics, 1(2):387-393, 1990.
[17] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[18] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
[19] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.

Received July 2, 2010

[^0]: ${ }^{1}$ This work has been partially supported by the NSERC grant OGP 9207.

