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The Perfect Number Theorem
and Wilson’s Theorem
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Summary. This article formalizes proofs of some elementary theorems
of number theory (see [1, 26]): Wilson’s theorem (that n is prime iff n > 1
and (n − 1)! ∼= −1 (mod n)), that all primes (1 mod 4) equal the sum of two
squares, and two basic theorems of Euclid and Euler about perfect numbers. The
article also formally defines Euler’s sum of divisors function φ, proves that φ is
multiplicative and that

∑
k|n φ(k) = n.
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The articles [14], [38], [28], [32], [39], [11], [40], [13], [33], [12], [5], [4], [2], [6],
[10], [37], [36], [25], [3], [15], [19], [35], [24], [30], [18], [34], [16], [9], [22], [21], [41],
[17], [20], [7], [31], [29], [8], [23], and [27] provide the notation and terminology
for this paper.

1. Preliminaries

We adopt the following convention: k, n, m, l, p denote natural numbers and
n0, m0 denote non zero natural numbers.
We now state several propositions:

(1) 2n+1 < 2n+2 − 1.
(2) If n0 is even, then there exist k, m such that m is odd and k > 0 and
n0 = 2k ·m.

(3) If n = 2k and m is odd, then n and m are relative prime.

(4) {n} is a finite subset of N.
(5) {n,m} is a finite subset of N.
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In the sequel f is a finite sequence and x, X, Y are sets.
The following four propositions are true:

(6) If f is one-to-one, then f�n is one-to-one.

(7) If f is one-to-one and n ∈ dom f, then f(n) /∈ rng(f�n).
(8) If x ∈ rng f and x /∈ rng(f�n), then x = f(n).
(9) Let f1 be a finite sequence of elements of N and f2 be a finite sequence
of elements of X. If rng f1 ⊆ dom f2, then f2 · f1 is a finite sequence of
elements of X.

In the sequel f1, f2, f3 are finite sequences of elements of R.
Next we state four propositions:

(10) If X ∪ Y = dom f1 and X misses Y and f2 = f1 · SgmX and f3 =
f1 · SgmY, then

∑
f1 =

∑
f2 +

∑
f3.

(11) If f2 = f1 · SgmX and dom f1 \ f1−1({0}) ⊆ X ⊆ dom f1, then
∑
f1 =∑

f2.

(12)
∑
f1 =

∑
(f1 − {0}).

(13) Every finite sequence of elements of N is a finite sequence of elements of
R.
In the sequel n1, n2, m1, m2 denote natural numbers.
We now state several propositions:

(14) If n1 ∈ NatDivisorsn and m1 ∈ NatDivisorsm and n and m are relative
prime, then n1 and m1 are relative prime.

(15) If n1 ∈ NatDivisorsn and m1 ∈ NatDivisorsm and n2 ∈ NatDivisorsn
and m2 ∈ NatDivisorsm and n and m are relative prime and n1 ·m1 =
n2 ·m2, then n1 = n2 and m1 = m2.

(16) If n1 ∈ NatDivisorsn0 and m1 ∈ NatDivisorsm0, then n1 · m1 ∈
NatDivisors(n0 ·m0).

(17) If n0 andm0 are relative prime, then k gcdn0·m0 = (k gcdn0)·(k gcdm0).
(18) If n0 and m0 are relative prime and k ∈ NatDivisors(n0 ·m0), then there
exist n1, m1 such that n1 ∈ NatDivisorsn0 and m1 ∈ NatDivisorsm0 and
k = n1 ·m1.

(19) If p is prime, then NatDivisors(pn) = {pk; k ranges over elements of N:
k ≤ n}.

(20) If 0 6= l and p > l and p > n1 and p > n2 and l ·n1 mod p = l ·n2 mod p
and p is prime, then n1 = n2.

(21) If p is prime, then p -count(n0 gcdm0) = min(p -count(n0), p -count(m0)).
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2. Wilson’s Theorem

One can prove the following proposition

(22) n is prime iff ((n−′ 1)! + 1) mod n = 0 and n > 1.

3. All Primes Congruent to 1 Modulo 4 are the Sum of Two
Squares

Next we state the proposition

(23) If p is prime and pmod4 = 1, then there exist n,m such that p = n2+m2.

4. The Sum of Divisors Function

Let I be a set, let f be a function from I into N, and let J be a finite subset
of I. Then f�J is a bag of J .
Let I be a set, let f be a function from I into N, and let J be a finite subset

of I. Observe that
∑
(f�J) is natural.

We now state two propositions:

(24) Let f be a function from N into N, F be a function from N into R, and
J be a finite subset of N. If f = F and there exists k such that J ⊆ Seg k,
then

∑
(f�J) =

∑
FuncSeq(F,Sgm J).

(25) Let I be a non empty set, F be a partial function from I to R, f be
a function from I into N, and J be a finite subset of I. If f = F, then∑
(f�J) =

∑J
κ=0 F (κ).

We follow the rules: I, j denote sets, f , g denote functions from I into N,
and J , K denote finite subsets of I.
We now state three propositions:

(26) If J misses K, then
∑
(f�(J ∪K)) =

∑
(f�J) +

∑
(f�K).

(27)
∑
(f�({j})) = f(j).

(28)
∑
((·N · (f × g))�(J ×K)) =

∑
(f�J) ·

∑
(g�K).

Let k be a natural number. The functor EXP k yielding a function from N
into N is defined by:
(Def. 1) For every natural number n holds (EXP k)(n) = nk.

Let k, n be natural numbers. The functor σk(n) yields an element of N and
is defined as follows:

(Def. 2)(i) For every non zero natural number m such that n = m holds σk(n) =∑
(EXP k�NatDivisorsm) if n 6= 0,

(ii) σk(n) = 0, otherwise.

Brought to you by | Biblioteka Uniwersytecka w Bialymstoku
Authenticated

Download Date | 12/2/15 10:51 AM



126 marco riccardi

Let k be a natural number. The functor Σk yields a function from N into N
and is defined by:

(Def. 3) For every natural number n holds (Σk)(n) = σk(n).

Let n be a natural number. The functor σ(n) yields an element of N and is
defined as follows:

(Def. 4) σ(n) = σ1(n).

The following propositions are true:

(29) σk(1) = 1.

(30) If p is prime, then σ(pn) = p
n+1−1
p−1 .

(31) If m | n0 and n0 6= m 6= 1, then 1 +m+ n0 ≤ σ(n0).
(32) If m | n0 and k | n0 and n0 6= m and n0 6= k and m 6= 1 and k 6= 1 and
m 6= k, then 1 +m+ k + n0 ≤ σ(n0).

(33) If σ(n0) = n0 +m and m | n0 and n0 6= m, then m = 1 and n0 is prime.

Let f be a function from N into N. We say that f is multiplicative if and
only if:

(Def. 5) For all non zero natural numbers n0,m0 such that n0 andm0 are relative
prime holds f(n0 ·m0) = f(n0) · f(m0).
One can prove the following propositions:

(34) Let f , F be functions from N into N. Suppose f is multiplicative and for
every n0 holds F (n0) =

∑
(f�NatDivisorsn0). Then F is multiplicative.

(35) EXP k is multiplicative.

(36) Σk is multiplicative.

(37) If n0 and m0 are relative prime, then σ(n0 ·m0) = σ(n0) · σ(m0).

5. Two Basic Theorems on Perfect Numbers

Let n0 be a non zero natural number. We say that n0 is perfect if and only
if:

(Def. 6) σ(n0) = 2 · n0.
We now state two propositions:

(38) If 2p −′ 1 is prime and n0 = 2p−
′1 · (2p −′ 1), then n0 is perfect.

(39) If n0 is even and perfect, then there exists a natural number p such that
2p −′ 1 is prime and n0 = 2p−

′1 · (2p −′ 1).
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6. A Formula Involving Euler’s φ Function

The function φ from N into N is defined by:
(Def. 7) For every element k of N holds φ(k) = Euler k.

The following proposition is true

(40)
∑
(φ �NatDivisorsn0) = n0.
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