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Summary. In the article, we continue the formalization of the work de-
voted to Tarski’s geometry – the book “Metamathematische Methoden in der
Geometrie” by W. Schwabhäuser, W. Szmielew, and A. Tarski. We use the Mi-
zar system to formalize Chapter 9 of this book. We deal with half-planes and
planes proving their properties as well as the theory of intersecting lines.
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Introduction

In the article, we continue [6], [7], and [8] – the formalization of the work
devoted to Tarski’s geometry – the book “Metamathematische Methoden in der
Geometrie” (SST for short) by W. Schwabhäuser, W. Szmielew, and A. Tarski
[18], [10], [11]. We use the Mizar system [1], [2] to formalize (parts of) Chapter 9
of the SST book developing also results of Gupta [12] included there.

The first Mizar article formalizing Tarski’s axioms [17] was inspired by ano-
ther formalizations of SST: within the classical two-valued logic with Isabel-
le/HOL by Makarios [13, 14, 15], Metamath or by means of Coq [16, 4]. Some
of the results were obtained with the help of other automatic proof assistants,
either partially [9], or completely [3]. Relatively recent achievement was the
import of huge portions of code from GeoCoq into Isabelle [5].
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Here we define the notion of half-planes and planes and prove some of their
basic properties, a theory of intersecting lines (including orthogonality), notions
of betweenness including lines and points, shifting this notion into planes and
spaces of higher dimension.

1. Preliminaries

Now we state the proposition:

(1) Let us consider Tarski plane S satisfying the axiom of congruence iden-
tity and the axiom of betweenness identity, and points a, b, c of S. If
a, b ¬ c, c, then a = b.

2. Betweenness Relation Revisited

Let S be a non empty Tarski plane, a, b be points of S, and A be a subset
of S. We say that A lies between a and b if and only if

(Def. 1) A is a line and a /∈ A and b /∈ A and there exists a point t of S such that
t ∈ A and t lies between a and b.

Now we state the proposition:

(2) Let us consider a non empty Tarski plane S satisfying the axiom of
betweenness identity, a point a of S, and a subset A of S. Then A does
not lie between a and a.

Let S be a non empty Tarski plane and a, b, p, q be points of S. We say that
between(a, p, q, b) if and only if

(Def. 2) p 6= q and Line(p, q) lies between a and b.

From now on S denotes a non empty Tarski plane satisfying the axiom of
congruence identity, the axiom of segment construction, the axiom of between-
ness identity, and the axiom of Pasch, a, b denote points of S, and A denotes
a subset of S. Now we state the proposition:

(3) 9.2 Satz:
If A lies between a and b, then A lies between b and a.

In the sequel S denotes a non empty Tarski plane satisfying seven Tarski’s
geometry axioms, a, b, c, m, r, s denote points of S, and A denotes a subset of
S. Now we state the propositions:

(4) If b lies between a and c and A is a line and a, c ∈ A, then b ∈ A.

(5) If b lies between a and c and a 6= b and A is a line and a, b ∈ A, then
c ∈ A.
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(6) Suppose A lies between a and c and m ∈ A and Middle(a,m, c) and
r ∈ A. If a 'r b and b lies between r and a, then A lies between b and c.
The theorem is a consequence of (4).

(7) 9.3 Lemma:
If A lies between a and c and m ∈ A and Middle(a,m, c) and r ∈ A, then
for every b such that a 'r b holds A lies between b and c. The theorem is
a consequence of (6), (4), and (5).

Let S be a non empty Tarski plane satisfying seven Tarski’s geometry axioms,
a, b be points of S, and A be a subset of S. We say that A ⊥a b if and only if

(Def. 3) A, a ⊥ a, b.

3. Half-lines and Outer Pasch

Let S be a non empty Tarski plane and K be a subset of S. We say that K
is a half-line if and only if

(Def. 4) there exist points p, a of S such that p 6= a and K = HalfLine(p, a).

Now we state the proposition:

(8) Let us consider points a, b, c, d, e of S. Suppose b 6= c and c 6= d and c
lies between b and d and (b lies between a and c or a lies between b and c)
and (d lies between c and e or e lies between c and d). Then c lies between
a and e.

From now on S denotes a non empty Tarski plane satisfying Lower Dimen-
sion Axiom and seven Tarski’s geometry axioms, a, b, c, d, m, p, q, r, s, x denote
points of S, and A, A′, E denote subsets of S. Now we state the propositions:

(9) Suppose r 6= s and s, c ¬ r, a and A lies between a and c and r ∈ A and
A ⊥r a and s ∈ A and A ⊥s c. Then

(i) if Middle(r,m, s), then for every point u of S, u 'r a iff Sm(u) 's c,
and

(ii) for every points u, v of S such that u 'r a and v 's c holds A lies
between u and v.

The theorem is a consequence of (1) and (7).

(10) 9.4 Lemma:
Suppose A lies between a and c and r ∈ A and A ⊥r a and s ∈ A and
A ⊥s c. Then

(i) if Middle(r,m, s), then for every point u of S, u 'r a iff Sm(u) 's c,
and
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(ii) for every points u, v of S such that u 'r a and v 's c holds A lies
between u and v.

The theorem is a consequence of (9) and (8).

(11) Let us consider points a, b of S. If a 6= b, then b 'a b.

(12) Satz 9.5 (Gupta 1965):
If A lies between a and c and r ∈ A, then for every b such that a 'r b holds
A lies between b and c.
Proof: Consider p, q being points of S such that p 6= q and A = Line(p, q).
Consider x being a point of S such that x is perpendicular foot of p, q,
a. b /∈ A by [7, (87), (45)]. Consider y being a point of S such that y is
perpendicular foot of p, q, b. Consider z being a point of S such that z
is perpendicular foot of p, q, c. Consider m being a point of S such that
Middle(x,m, z). Set d = Sm(a). d /∈ A by [7, (87)]. z 6= d by [7, (45), (87)].
d 'z c. A lies between a and d and m ∈ A and Middle(a,m, d) and r ∈ A
and a 'r b. A lies between b and d. �

(13) Satz 9.6 (Satz von Pasch, Exterior form – Gupta 1965):
If c lies between a and p and q lies between b and c, then there exists x
such that x lies between a and b and q lies between p and x. The theorem
is a consequence of (12).

4. Points on the Same Side of the Line

Let S be a non empty Tarski plane, A be a subset of S, and a, b be points
of S. We say that a 'A b if and only if

(Def. 5) there exists a point c of S such that A lies between a and c and A lies
between b and c.

Let a, b, p, q be points of S. We say that a 'p,q b if and only if

(Def. 6) p 6= q and a '
Line(p,q) b.

Now we state the propositions:

(14) 9.8 Satz:
If A lies between a and c, then A lies between b and c iff a 'A b. The
theorem is a consequence of (12).

(15) 9.9 Satz:
If A lies between a and b, then ¬a 'A b. The theorem is a consequence of
(14).

(16) 9.10 Lemma:
If A is a line and a /∈ A, then there exists c such that A lies between a
and c.
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Proof: Consider p, q such that p 6= q and A = Line(p, q).
Set c = Sp(a). p 6= c by [7, (104)]. �

(17) 9.11 Satz: Reflexivity:
If A is a line and a /∈ A, then a 'A a. The theorem is a consequence of (16).

(18) 9.12 Satz: Symmetry:
If a 'A b, then b 'A a.

(19) 9.13 Satz: Transitivity:
If a 'A b and b 'A c, then a 'A c. The theorem is a consequence of (14).

5. Half-planes

Let S be a non empty Tarski plane, A be a subset of S, and a be a point of
S. The functor HalfPlane(A, a) yielding a subset of S is defined by the term

(Def. 7) {x, where x is a point of S : x 'A a}.

Let S be a non empty Tarski plane and p, q, a be points of S. Assume p, q
and a are not collinear. The functor HalfPlane(p, q, a) yielding a set is defined
by the term

(Def. 8) HalfPlane(Line(p, q), a).

Now we state the propositions:

(20) If A is a line and a /∈ A, then a ∈ HalfPlane(A, a). The theorem is
a consequence of (17).

(21) If A is a line and a /∈ A and b /∈ A and b ∈ HalfPlane(A, a), then
a ∈ HalfPlane(A, b).

(22) If b ∈ HalfPlane(A, a), then HalfPlane(A, b) ⊆ HalfPlane(A, a). The the-
orem is a consequence of (19).

(23) If A is a line and a /∈ A and b /∈ A and b ∈ HalfPlane(A, a), then
HalfPlane(A, b) = HalfPlane(A, a). The theorem is a consequence of (21)
and (22).

Let S be a non empty Tarski plane, A be a subset of S, and a, b be points
of S. We say that a and b are on the opposite sides of A if and only if

(Def. 9) A lies between a and b.

Now we state the propositions:

(24) If a 'A b, then A is a line and a /∈ A and b /∈ A.

(25) 9.17 Satz:
If a 'A b and c lies between a and b, then c 'A a.
Proof: Consider d being a point of S such that A lies between a and d
and A lies between b and d. Consider x being a point of S such that x ∈ A
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and x lies between a and d. Consider y being a point of S such that y ∈ A
and y lies between b and d. Consider t being a point of S such that t lies
between c and d and t lies between x and y. c /∈ A. A lies between c and
d by (24), [7, (87), (14)]. �

6. Half-planes and Collinearity

Now we state the propositions:

(26) 9.18 Satz:
If A is a line and p ∈ A and a, b and p are collinear, then A lies between
a and b iff p lies between a and b and a /∈ A and b /∈ A.

(27) If A is a line and p ∈ A and a 'p b and a /∈ A, then A lies between b and
Sp(a).
Proof: Set c = Sp(a). p lies between a and c. c 6= p. b /∈ A by [7, (87),
(73)]. c /∈ A by [7, (87)]. �

(28) If A is a line and p ∈ A and a /∈ A, then A lies between a and Sp(a).
Proof: Set c = Sp(a). p lies between a and c. c 6= p. c /∈ A by [7, (87)]. �

(29) 9.19 Satz:
If A is a line and p ∈ A and a, b and p are collinear, then a 'A b iff a 'p b
and a /∈ A. The theorem is a consequence of (15), (28), and (27).

7. Planes

Let S be a non empty Tarski plane satisfying Lower Dimension Axiom and
seven Tarski’s geometry axioms, A be a subset of S, and r be a point of S.
Assume A is a line and r /∈ A. The functor Plane(A, r) yielding a subset of S is
defined by

(Def. 10) there exists a point r′ of S such that A lies between r and r′ and it =
(HalfPlane(A, r) ∪A) ∪HalfPlane(A, r′).

Now we state the propositions:

(30) If A is a line and r /∈ A, then HalfPlane(A, r) ⊆ Plane(A, r).

(31) If A is a line and r /∈ A, then A ⊆ Plane(A, r) and r ∈ Plane(A, r). The
theorem is a consequence of (20) and (30).

(32) Suppose A is a line and r /∈ A. Then Plane(A, r) = {x, where x is
a point of S : x 'A r or x ∈ A or A lies between r and x}.
Proof: Consider r′ being a point of S such that A lies between r and
r′ and Plane(A, r) = (HalfPlane(A, r) ∪ A) ∪ HalfPlane(A, r′). Set P =
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{x, where x is a point of S : x 'A r or x ∈ A or A lies between r and x}.
Plane(A, r) ⊆ P by [7, (14)], (14). P ⊆ Plane(A, r) by [7, (14)]. �

Let S be a non empty Tarski plane satisfying Lower Dimension Axiom and
seven Tarski’s geometry axioms and p, q, r be points of S. Assume p, q and r
are not collinear. The functor Plane(p, q, r) yielding a subset of S is defined by
the term

(Def. 11) Plane(Line(p, q), r).

Let E be a subset of S. We say that E is a plane if and only if

(Def. 12) there exist points p, q, r of S such that p, q and r are not collinear and
E = Plane(p, q, r).

Now we state the propositions:

(33) If A lies between a and b, then b ∈ Plane(A, a). The theorem is a conse-
quence of (32).

(34) 9.21 Satz:
If A is a line and r /∈ A and s ∈ Plane(A, r) and s /∈ A, then Plane(A, r) =
Plane(A, s). The theorem is a consequence of (14) and (23).

(35) If A,A′ intersect at p and A,A′ intersect at q, then p = q.

(36) If A is a line and a, p ∈ A, then Sp(a) ∈ A.

(37) 9.22 Lemma:
If A,A′ intersect at p and r ∈ A′ and r 6= p, then A′ ⊆ Plane(A, r). The
theorem is a consequence of (32), (31), and (36).

(38) If A is a line and A′ is a line and A 6= A′, then there exists a point r of
S such that r /∈ A and r ∈ A′.

Let S be a non empty Tarski plane satisfying Lower Dimension Axiom and
seven Tarski’s geometry axioms and A, A′ be subsets of S. Assume A is a line
and A′ is a line and A 6= A′ and A ∩A′ is not empty. The functor Plane(A,A′)
yielding a subset of S is defined by

(Def. 13) there exists a point r of S such that r /∈ A and r ∈ A′ and it =
Plane(A, r).

Now we state the propositions:

(39) Let us consider a non empty Tarski plane S, subsets A, B of S, and
a point x of S. If A,B intersect at x, then B,A intersect at x.

(40) If A,A′ intersect atp, then A ⊆ Plane(A′, A) and A′ ⊆ Plane(A,A′). The
theorem is a consequence of (37).

(41) Suppose A,A′ intersect at p. Then there exists a point r of S such that

(i) r /∈ A, and

(ii) r ∈ A′, and
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(iii) Plane(A,A′) = Plane(A, r), and

(iv) A′ = Line(r, p), and

(v) there exists a point r′ of S such that p lies between r and r′ and
p 6= r′ and r, p and r′ are collinear and r′ /∈ A and Plane(A, r) =
Plane(A, r′).

Proof: Consider r being a point of S such that r /∈ A and r ∈ A′ and
Plane(A,A′) = Plane(A, r). Consider r′ being a point of S such that p
lies between r and r′ and p 6= r′. r′ /∈ A by [7, (89)]. r′ ∈ A′ and A′ ⊆
Plane(A, r). Plane(A, r) = Plane(A, r′). �

(42) If A,A′ intersect at p, then Plane(A,A′) ⊆ Plane(A′, A). The theorem is
a consequence of (41), (32), (31), (40), (14), (34), (29), and (37).

Now we state the propositions:

(43) 9.24 Satz:
If A,A′ intersect at p, then A ⊆ Plane(A,A′) and A′ ⊆ Plane(A,A′) and
Plane(A,A′) = Plane(A′, A). The theorem is a consequence of (39), (40),
and (42).

(44) Suppose a, b ∈ E and a 6= b and p, q and r are not collinear and
E = Plane(p, q, r) and c ∈ Line(p, q) and c /∈ Line(a, b) and b /∈ Line(p, q).
Then

(i) Line(a, b) ⊆ E, and

(ii) there exists c such that a, b and c are not collinear and E =
Plane(a, b, c).

The theorem is a consequence of (43), (34), and (31).

(45) Suppose a, b ∈ E and a 6= b and p, q and r are not collinear and
E = Plane(p, q, r) and b /∈ Line(p, q) and Line(p, q) 6= Line(a, b). Then

(i) Line(a, b) ⊆ E, and

(ii) there exists c such that a, b and c are not collinear and E =
Plane(a, b, c).

Proof: Set A = Line(p, q). Set A′ = Line(a, b). There exists a point c of
S such that c /∈ A′ and c ∈ A by [7, (46), (83), (87)]. �

(46) Satz 9.25:
If E is a plane and a, b ∈ E and a 6= b, then Line(a, b) ⊆ E and there
exists c such that a, b and c are not collinear and E = Plane(a, b, c). The
theorem is a consequence of (31) and (45).

(47) Satz 9.26:
If a, b and c are not collinear and E is a plane and a, b, c ∈ E, then
E = Plane(a, b, c). The theorem is a consequence of (46) and (34).
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(48) If A is a line and a /∈ A, then a ∈ Plane(A, a). The theorem is a conse-
quence of (32) and (17).

(49) 9.27.(1) Satz:
If a, b and c are not collinear, then there exists a subset E of S such
that Plane(a, b, c) = E and E is a plane and a, b, c ∈ E. The theorem is
a consequence of (31) and (48).

(50) 9.27.(2) Satz:
If A is a line and c /∈ A, then there exists a subset E of S such that E
is a plane and A ⊆ E and c ∈ E and Plane(A, c) = E. The theorem is
a consequence of (31) and (48).

(51) 9.27.(3) Satz:
If A,A′ intersect at p, then there exists a subset E of S such that E is
a plane and A ⊆ E and A′ ⊆ E and Plane(A,A′) = E. The theorem is
a consequence of (50) and (43).

(52) 9.28 Folgerung:
Suppose a, b and c are not collinear. Let us consider subsets E1, E2 of S.
Suppose E1 is a plane and a, b, c ∈ E1 and E2 is a plane and a, b, c ∈ E2.
Then E1 = E2. The theorem is a consequence of (47).

(53) 9.29 Folgerung:
Suppose a, b and c are not collinear. Then

(i) Plane(a, b, c) = Plane(b, c, a), and

(ii) Plane(a, b, c) = Plane(c, a, b), and

(iii) Plane(a, b, c) = Plane(b, a, c), and

(iv) Plane(a, b, c) = Plane(a, c, b), and

(v) Plane(a, b, c) = Plane(c, b, a).

The theorem is a consequence of (49) and (52).

(54) 9.30 Folgerung:
Suppose A is a line. Let us consider subsets E1, E2 of S. Suppose E1 is
a plane and E2 is a plane and A ⊆ E1 and A ⊆ E2 and E1 6= E2. Let us
consider a point x of S. Then x ∈ E1 and x ∈ E2 if and only if x ∈ A.
The theorem is a consequence of (52).

(55) If s 'p,q r, then s 6= p and s 6= q and r 6= p and r 6= q and p 6= q.
(56) Line(b, c) does not lie between a and a.

(57) If A lies between a and b, then a 6= b.
(58) Let us consider Tarski plane S satisfying the axiom of congruence identi-

ty, the axiom of segment construction, the axiom of betweenness identity,
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the axiom of Pasch, and Lower Dimension Axiom. Then there exist points
p, q of S such that p 6= q.

(59) 9.31 Satz:
If s 'p,q r and s 'p,r q, then Line(p, s) lies between q and r. The theorem is
a consequence of (14), (29), (19), and (12).

8. Coplanarity Relation

Let S be a non empty Tarski plane satisfying Lower Dimension Axiom and
seven Tarski’s geometry axioms and A be a subset of S. We say that A is a set
of coplanar points if and only if

(Def. 14) there exists a subset E of S such that E is a plane and A ⊆ E.

Let S be a non empty Tarski plane satisfying Lower Dimension Axiom and
seven Tarski’s geometry axioms and a, b, c, d be points of S. We say that a, b,
c, d are coplanar if and only if

(Def. 15) there exists a subset E of S such that E is a plane and a, b, c, d ∈ E.

Now we state the propositions:

(60) Suppose a, b, c, d are coplanar. Then

(i) a, b, d, c are coplanar, and

(ii) a, c, b, d are coplanar, and

(iii) a, c, d, b are coplanar, and

(iv) a, d, c, b are coplanar, and

(v) a, d, b, c are coplanar, and

(vi) b, a, c, d are coplanar, and

(vii) b, a, d, c are coplanar, and

(viii) b, c, a, d are coplanar, and

(ix) b, c, d, a are coplanar, and

(x) b, d, a, c are coplanar, and

(xi) b, d, c, a are coplanar, and

(xii) c, a, b, d are coplanar, and

(xiii) c, a, d, b are coplanar, and

(xiv) c, b, a, d are coplanar, and

(xv) c, b, d, a are coplanar, and

(xvi) d, a, b, c are coplanar, and
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(xvii) d, a, c, b are coplanar, and

(xviii) d, b, a, c are coplanar, and

(xix) d, b, c, a are coplanar.

(61) a, a, a, a are coplanar. The theorem is a consequence of (49).

(62) a, a, a, b are coplanar. The theorem is a consequence of (61) and (49).

(63) a, a, b, c are coplanar. The theorem is a consequence of (49), (46), and
(62).

(64) If a, b and x are collinear and c, d and x are collinear and a 6= x and
c 6= x, then a, b, c, d are coplanar. The theorem is a consequence of (49),
(31), and (53).

(65) If b, a and x are collinear and c, d and x are collinear and b 6= x and
c 6= x, then a, b, c, d are coplanar. The theorem is a consequence of (64).

(66) If a, b and x are collinear and c, d and x are collinear and b 6= x and
c 6= x, then a, b, c, d are coplanar. The theorem is a consequence of (65).

(67) Suppose a, b and x are collinear and c, d and x are collinear and (b 6= x
and c 6= x or b 6= x and d 6= x or a 6= x and c 6= x or a 6= x and d 6= x).
Then a, b, c, d are coplanar. The theorem is a consequence of (66), (64),
and (65).

(68) 9.33 Satz:
a, b, c, d are coplanar if and only if there exists x such that a, b and x are
collinear and c, d and x are collinear or a, c and x are collinear and b, d
and x are collinear or a, d and x are collinear and b, c and x are collinear.
The theorem is a consequence of (63), (47), (53), (59), (32), and (67).

(69) Suppose a, b and c are not collinear. Then

(i) Plane(a, b, c) is a plane, and

(ii) a, b, c ∈ Plane(a, b, c), and

(iii) for every points u, v of S such that u, v ∈ Plane(a, b, c) and u 6= v
holds Line(u, v) ⊆ Plane(a, b, c).

The theorem is a consequence of (49) and (46).

(70) 9.34 Satz:
Suppose a, b and c are not collinear. Let us consider a subset E of S.
Suppose a, b, c ∈ E and for every points u, v of S such that u, v ∈ E and
u 6= v holds Line(u, v) ⊆ E. Then Plane(a, b, c) ⊆ E.
Proof: Plane(a, b, c) is a plane and a, b, c ∈ Plane(a, b, c) and for every
points u, v of S such that u, v ∈ Plane(a, b, c) and u 6= v holds Line(u, v) ⊆
Plane(a, b, c). a 6= c by [7, (46), (14)]. b 6= c by [7, (46)]. Plane(a, b, c) ⊆ E
by (68), [7, (14)]. �
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9. Towards Higher Dimensions

Let S be a non empty Tarski plane satisfying Lower Dimension Axiom and
seven Tarski’s geometry axioms, a, b be points of S, and A be a subset of S. We
say that between2(a,A, b) if and only if

(Def. 16) A is a plane and a /∈ A and b /∈ A and there exists a point t of S such
that t ∈ A and t lies between a and b.

Now we state the propositions:

(71) 9.38 Satz (n = 2):
If between2(a,A, b), then between2(b, A, a).

(72) If p lies between a and c and a 'p b, then p lies between b and c.

(73) 9.39 Satz (n = 2):
If between2(a,A, c) and r ∈ A, then for every b such that a 'r b holds
between2(b, A, c). The theorem is a consequence of (69) and (12).

Let S be a non empty Tarski plane satisfying Lower Dimension Axiom and
seven Tarski’s geometry axioms, a, b be points of S, and A be a subset of S. We

say that a
2
'
A b if and only if

(Def. 17) there exists a point c of S such that between2(a,A, c) and between2(b, A, c).

Now we state the propositions:

(74) 9.41 Satz (n = 2):

If between2(a,A, c), then between2(b, A, c) iff a
2
'
A b. The theorem is a con-

sequence of (69) and (73).

(75) 9.9 Satz (Version n = 2):

If between2(a,A, b), then ¬(a
2
'
A b). The theorem is a consequence of (74).

(76) 9.10 Lemma (Version n = 2):
If A is a plane and a /∈ A, then there exists c such that between2(a,A, c).
Proof: Consider p, q, r such that p, q and r are not collinear and A =
Plane(p, q, r). r /∈ Line(p, q). Line(p, q) ⊆ A. p, q, r ∈ A. Set c = Sp(a).
p 6= c by [7, (104)]. c /∈ A. �

(77) 9.11 Satz (Version n = 2):

If A is a plane and a /∈ A, then a
2
'
A a. The theorem is a consequence of

(76).

(78) 9.12 Satz (Version n = 2):

If a
2
'
A b, then b

2
'
A a.



Tarski geometry axioms. Part V – half-planes and ... 337

(79) 9.13 Satz (Version n = 2):

If a
2
'
A b and b

2
'
A c, then a

2
'
A c. The theorem is a consequence of (74).

10. Half-spaces

Let S be a non empty Tarski plane satisfying Lower Dimension Axiom and
seven Tarski’s geometry axioms, A be a subset of S, and a be a point of S.
Assume A is a plane and a /∈ A. The functor HalfSpace3(A, a) yielding a subset
of S is defined by the term

(Def. 18) {x, where x is a point of S : x
2
'
A a}.

Let p, q, a be points of S. Assume p, q and a are not collinear. The functor
HalfSpace3(p, q, a) yielding a set is defined by the term

(Def. 19) HalfSpace3(Line(p, q), a).

Now we state the propositions:

(80) If A is a plane and a /∈ A, then a ∈ HalfSpace3(A, a). The theorem is
a consequence of (77).

(81) If A is a plane and a /∈ A and b /∈ A and b ∈ HalfSpace3(A, a), then
a ∈ HalfSpace3(A, b).

(82) If A is a plane and a /∈ A and b /∈ A and b ∈ HalfSpace3(A, a), then
HalfSpace3(A, b) ⊆ HalfSpace3(A, a). The theorem is a consequence of
(79).

(83) If A is a plane and a /∈ A and b /∈ A and b ∈ HalfSpace3(A, a), then
HalfSpace3(A, b) = HalfSpace3(A, a). The theorem is a consequence of
(81) and (82).

11. Towards Spaces in Higher Dimensions

Let S be a non empty Tarski plane satisfying Lower Dimension Axiom and
seven Tarski’s geometry axioms, A be a subset of S, and r be a point of S.
Assume A is a plane and r /∈ A. The functor Space3(A, r) yielding a subset of
S is defined by

(Def. 20) there exists a point r′ of S such that between2(r,A, r′) and it =
(HalfSpace3(A, r) ∪A) ∪HalfSpace3(A, r′).

Now we state the propositions:

(84) If A is a plane and r /∈ A, then HalfSpace3(A, r) ⊆ Space3(A, r).

(85) If A is a plane and r /∈ A, then A ⊆ Space3(A, r) and r ∈ Space3(A, r).
The theorem is a consequence of (80) and (84).
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(86) Suppose A is a plane and r /∈ A. Then Space3(A, r) = {x, where x is

a point of S : x
2
'
A r or x ∈ A or between2 (r,A, x)}.

Proof: Consider r′ being a point of S such that between2(r,A, r′) and
Space3(A, r) = (HalfSpace3(A, r)∪A)∪HalfSpace3(A, r′).SetP = {x,where

x is a point of S : x
2
'
A r or x ∈ A or between2 (r,A, x)}. Space3(A, r) ⊆ P

by [7, (14)], (74). P ⊆ Space3(A, r) by [7, (14)]. �

Let S be a non empty Tarski plane satisfying Lower Dimension Axiom and
seven Tarski’s geometry axioms and p0, p1, p2, r be points of S. Assume p0, p1,
p2, r are not coplanar. The functor Space3(p0, p1, p2, r) yielding a subset of S is
defined by the term

(Def. 21) Space3(Plane(p0, p1, p2), r).

Let E be a subset of S. We say that E is a space3 if and only if

(Def. 22) there exists a point r of S and there exists a subset A of S such that A
is a plane and r /∈ A and E = Space3(A, r).

Now we state the propositions:

(87) If A is a plane and a, b and c are not collinear and a, b, c ∈ A and d /∈ A,
then a, b, c, d are not coplanar.

(88) Suppose E is a space3. Then there exists a and there exists b and there
exists c and there exists d such that a, b, c, d are not coplanar and E =
Space3(a, b, c, d). The theorem is a consequence of (69) and (87).
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