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Introduction

So far, the authors have proved in Mizar [2], [15] many theorems on the
integral theory of one-variable functions for Riemann and Lebesgue integrals
[9], [5], [11] (for interesting survey of formalizations of real analysis in another
proof-assistants like ACL2 [13], Isabelle/HOL [12], Coq [3], see [4]). As a result,
we have shown that if a function bounded on a closed interval (i.e., a continu-
ous function) is Riemann integrable, then it is Lebesgue integrable, and both
integrals coincide [10]. Furthermore, for the Lebesgue integral, there exist inte-
gral theorems on the product measure spaces [9]. From these results, this article
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shows that the Lebesgue integral of a continuous function of two variables coin-
cides with the Riemann iterated integral of a projective function [1]. In the first
three sections of this article, we summarize the basic properties of the projec-
tion of functions of two variables. In the last section, we prove integrability and
iterated integrals of continuous functions of two variables.

Note that the continuity of functions of many variables is not directly ad-
dressed in this article, since there are quite a few formal notions of continuity
which can be applied in this case (although they are essentially the same; for
the discussion on the pros and cons of duplications in the Mizar Mathematical
Library, see [14]). The formalization follows [19] and [16].

1. Preliminaries

Now we state the propositions:

(1) Let us consider a non empty set X, a σ-field S of subsets of X, a σ-
measure M on S, and a partial function f from X to R. If dom f = ∅,
then

∫
f dM = 0.

(2) Let us consider a non empty set X, a σ-field S of subsets of X, a σ-
measure M on S, and a partial function f from X to R. If dom f = ∅,
then

∫
f dM = 0. The theorem is a consequence of (1).

(3) Let us consider a non empty set X, a σ-field S of subsets of X, and
a σ-measure M on S. If M is σ-finite, then COM(M) is σ-finite.
Proof: Consider E being a set sequence of S such that for every natural
number n, M(E(n)) < +∞ and

⋃
E = X. For every natural number n,

E(n) ∈ COM(S,M). Reconsider E1 = E as a set sequence of COM(S,M).
For every natural number n, (COM(M))(E1(n)) < +∞. �

(4) B-Meas is σ-finite.
Proof: Define S(natural number) = [−$1, $1](∈ 2R). Consider E being
a function from N into 2R such that for every element i of N, E(i) = S(i).
For every natural number n, E(n) = [−n, n]. For every natural num-
ber n, E(n) ∈ the Borel sets by [7, (5)]. For every natural number n,
(B-Meas)(E(n)) < +∞ by [8, (71)]. �

(5) L-Meas is σ-finite.

(6) ProdMeas(L-Meas,L-Meas) is σ-finite.

(7) Let us consider a closed interval subset I of R, and a subset E of the real
normed space of R. If I = E, then E is compact.
Proof: For every sequence s1 of the real normed space of R such that
rng s1 ⊆ E there exists a sequence s2 of the real normed space of R such
that s2 is subsequence of s1 and convergent and lim s2 ∈ E. �
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Let S1, S2 be real normed spaces, D1 be a subset of S1, and D2 be a subset
of S2. Let us note that the functor D1 ×D2 yields a subset of S1 × S2. Now we
state the propositions:

(8) Let us consider real normed spaces P , Q, a subset E of P , and a subset
F of Q. Suppose E is compact and F is compact. Then E × F is subset
of P ×Q and compact.
Proof: Set S = P ×Q. Set X = E × F . For every sequence s1 of S such
that rng s1 ⊆ X there exists a sequence s2 of S such that s2 is subsequence
of s1 and convergent and lim s2 ∈ X. �

(9) Let us consider closed interval subsets I, J of R, and a subset E of
(the real normed space of R) × (the real normed space of R). If E = I ×
J , then E is compact. The theorem is a consequence of (7) and (8).

(10) Let us consider a set E, a partial function f from (the real normed space
of R) × (the real normed space of R) to the real normed space of R, and
a partial function g from R×R to R. Suppose f = g and E ⊆ dom f . Then
f is uniformly continuous on E if and only if for every real number e such
that 0 < e there exists a real number r such that 0 < r and for every real
numbers x1, x2, y1, y2 such that 〈〈x1, y1〉〉, 〈〈x2, y2〉〉 ∈ E and |x2 − x1| < r

and |y2 − y1| < r holds |g(〈〈x2, y2〉〉)− g(〈〈x1, y1〉〉)| < e.
Proof: For every real number e such that 0 < e there exists a real number
r such that 0 < r and for every points z1, z2 of (the real normed space of
R)× (the real normed space of R) such that z1, z2 ∈ E and ‖z1 − z2‖ < r

holds ‖f/z1 − f/z2‖ < e. �

(11) Let us consider intervals I, J . Then

(i) I × J is a subset of (the real normed space of R)× (the real normed
space of R), and

(ii) I × J ∈ σ(MeasRect(L-Field,L-Field)).

(12) Let us consider a point z of the real normed space of R, and real numbers
x, r. If x = z, then Ball(z, r) = ]x− r, x+ r[.
Proof: For every object p, p ∈ Ball(z, r) iff p ∈ ]x− r, x+ r[. �

(13) Let us consider a point z of (the real normed space of R) × (the real
normed space of R), and a real number r. Suppose 0 < r. Then there exists
a real number s and there exist real numbers x, y such that 0 < s < r and
z = 〈〈x, y〉〉 and ]x − s, x + s[ × ]y − s, y + s[ ⊆ Ball(z, r). The theorem is
a consequence of (12).

Let us consider a subset A of (the real normed space of R)×(the real normed
space of R). Now we state the propositions:

(14) Suppose for every real numbers a, b such that 〈〈a, b〉〉 ∈ A there exists
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a real-membered set R such that R is non empty and upper bounded and
R = {r,where r is a real number : 0 < r and ]a−r, a+r[×]b−r, b+r[ ⊆ A}.
Then there exists a function F from A into R such that for every real
numbers a, b such that 〈〈a, b〉〉 ∈ A there exists a real-membered set R such
that R is non empty and upper bounded and R = {r, where r is a real
number : 0 < r and ]a−r, a+r[× ]b−r, b+r[ ⊆ A} and F (〈〈a, b〉〉) = supR

2 .
Proof: Define P[object, object] ≡ there exist real numbers a, b and there
exists a real-membered set R such that $1 = 〈〈a, b〉〉 and R is non empty
and upper bounded and R = {r, where r is a real number : 0 < r and
]a− r, a+ r[× ]b− r, b+ r[ ⊆ A} and $2 = supR

2 . For every object x such
that x ∈ A there exists an object y such that y ∈ R and P[x, y].

Consider F being a function from A into R such that for every object
x such that x ∈ A holds P[x, F (x)]. For every real numbers a, b such that
〈〈a, b〉〉 ∈ A there exists a real-membered set R such that R is non empty
and upper bounded and R = {r, where r is a real number : 0 < r and
]a− r, a+ r[× ]b− r, b+ r[ ⊆ A} and F (〈〈a, b〉〉) = supR

2 . �

(15) If A is open, then A ∈ σ(MeasRect(L-Field,L-Field)). The theorem is
a consequence of (13) and (14).

(16) Let us consider a subset H of the real normed space of R, and an open
interval subset I of R. If H = I, then H is open.
Proof: For every point x of the real normed space of R such that x ∈ H
there exists a neighbourhood N of x such that N ⊆ H by [6, (18)], [18,
(4)]. �

(17) Let us consider a real number r, a set X, and a partial function g from
X to R. Then LE-dom(g, r) = g−1(]−∞, r[).

2. Continuity of Two-variable Functions

Now we state the propositions:

(18) Let us consider closed interval subsets I, J of R, a partial function f from
(the real normed space of R) × (the real normed space of R) to the real
normed space of R, and a partial function g from R×R to R. Suppose f is
continuous on I × J and f = g. Let us consider a real number e. Suppose
0 < e. Then there exists a real number r such that

(i) 0 < r, and

(ii) for every real numbers x1, x2, y1, y2 such that 〈〈x1, y1〉〉, 〈〈x2, y2〉〉 ∈ I×
J and |x2 − x1| < r and |y2 − y1| < r holds |g(〈〈x2, y2〉〉) − g(〈〈x1,
y1〉〉)| < e.
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The theorem is a consequence of (9) and (10).

(19) Let us consider a partial function f from (the real normed space of R)×
(the real normed space of R) to the real normed space of R, and a partial
function g from R× R to R. If f = g, then ‖f‖ = |g|.

(20) Let us consider a non empty set X, a partial function g from X to R,
and a subset A of X. Then |g�A| = |g|�A.
Proof: For every object x such that x ∈ dom |g�A| holds |g�A|(x) =
(|g|�A)(x). �

(21) Let us consider a real normed space S, a point x0 of S, and partial func-
tions f , g from S to the real normed space of R. Suppose f is continuous
in x0 and g = ‖f‖. Then g is continuous in x0.
Proof: For every sequence s1 of S such that rng s1 ⊆ dom g and s1 is
convergent and lim s1 = x0 holds g∗s1 is convergent and g/x0 = lim(g∗s1).
�

(22) Let us consider a set X, a real normed space S, and partial functions f ,
g from S to the real normed space of R. Suppose f is continuous on X

and g = ‖f‖. Then g is continuous on X. The theorem is a consequence
of (21).

(23) Let us consider closed interval subsets I, J of R, a partial function f from
(the real normed space of R) × (the real normed space of R) to the real
normed space of R, and a partial function g from R×R to R. Suppose f is
continuous on I × J and f = g. Let us consider a real number e. Suppose
0 < e. Then there exists a real number r such that

(i) 0 < r, and

(ii) for every real numbers x1, x2, y1, y2 such that 〈〈x1, y1〉〉, 〈〈x2, y2〉〉 ∈ I×
J and |x2 − x1| < r and |y2 − y1| < r holds ||g|(〈〈x2, y2〉〉) − |g|(〈〈x1,
y1〉〉)| < e.

The theorem is a consequence of (19), (22), and (18).

(24) Let us consider a real number r, a real normed space S, a subset E of S,
and a partial function f from S to the real normed space of R. Suppose
f is continuous on E and dom f = E. Then there exists a subset H of S
such that

(i) H ∩ E = f−1(]−∞, r[), and

(ii) H is open.

Proof: Define P[object, object] ≡ there exists a point t of S and there
exists a real number s such that t = $1 and s = $2 and 0 < s and for every
object t1 such that t1 ∈ E ∩ {t1, where t1 is a point of S : ‖t1 − t‖ < s}
holds f(t1) ∈ ]−∞, r[.
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For every object z such that z ∈ f−1(]−∞, r[) there exists an ob-
ject y such that y ∈ R and P[z, y]. Consider R being a function from
f−1(]−∞, r[) into R such that for every object x such that x ∈ f−1(]−∞, r[)
holds P[x,R(x)]. Define Q[object, object] ≡ there exists a point t of S
such that t = $1 and 0 < R($1) and $2 = {t1, where t1 is a point of
S : ‖t1− t‖ < R($1)}. For every object z such that z ∈ f−1(]−∞, r[) there
exists an object y such that y ∈ 2α and Q[z, y], where α is the carrier of S.

Consider B being a function from f−1(]−∞, r[) into 2(the carrier of S)

such that for every object x such that x ∈ f−1(]−∞, r[) holds Q[x,B(x)].
Set H =

⋃
rngB. For every object z, z ∈ H ∩E iff z ∈ f−1(]−∞, r[). For

every point z of S such that z ∈ H there exists a neighbourhood N of z
such that N ⊆ H. �

3. Properties of Projective Functions

Now we state the propositions:

(25) Let us consider non empty sets X, Y, Z, a subset A of X, a subset B of
Y, an element x of X, and a partial function f from X ×Y to Z. Suppose
dom f = A×B. Then

(i) if x ∈ A, then dom(ProjPMap1(f, x)) = B, and

(ii) if x /∈ A, then dom(ProjPMap1(f, x)) = ∅.
(26) Let us consider non empty sets X, Y, Z, a subset A of X, a subset B of

Y, an element y of Y, and a partial function f from X × Y to Z. Suppose
dom f = A×B. Then

(i) if y ∈ B, then dom(ProjPMap2(f, y)) = A, and

(ii) if y /∈ B, then dom(ProjPMap2(f, y)) = ∅.
(27) Let us consider non empty sets X, Y, a subset A of X, a subset B of Y,

an element x of X, and a partial function f from X × Y to R. Suppose
dom f = A×B. Then

(i) if x ∈ A, then dom(ProjPMap1(R(f), x)) =
B and dom(ProjPMap1(|R(f)|, x)) = B, and

(ii) if x /∈ A, then dom(ProjPMap1(R(f), x)) =
∅ and dom(ProjPMap1(|R(f)|, x)) = ∅.

The theorem is a consequence of (25).

(28) Let us consider non empty sets X, Y, a subset A of X, a subset B of Y,
an element y of Y, and a partial function f from X × Y to R. Suppose
dom f = A×B. Then
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(i) if y ∈ B, then dom(ProjPMap2(R(f), y)) =

A and dom(ProjPMap2(|R(f)|, y)) = A, and

(ii) if y /∈ B, then dom(ProjPMap2(R(f), y)) =

∅ and dom(ProjPMap2(|R(f)|, y)) = ∅.
The theorem is a consequence of (26).

(29) Let us consider non empty sets X, Y, a set Z, a partial function f from
X × Y to Z, an element x of X, and an element y of Y. Then

(i) rng ProjPMap1(f, x) ⊆ rng f , and

(ii) rng ProjPMap2(f, y) ⊆ rng f .

Let us consider non empty sets X, Y, a partial function f from X ×Y to R,
an element x of X, and an element y of Y. Now we state the propositions:

(30) (i) ProjPMap1(R(f), x) is a partial function from Y to R, and

(ii) ProjPMap1(|R(f)|, x) is a partial function from Y to R, and

(iii) ProjPMap2(R(f), y) is a partial function from X to R, and

(iv) ProjPMap2(|R(f)|, y) is a partial function from X to R.
The theorem is a consequence of (29).

(31) (i) ProjPMap1(R(f), x) = R(ProjPMap1(f, x)), and

(ii) ProjPMap1(|R(f)|, x) = |R(ProjPMap1(f, x))|, and

(iii) ProjPMap2(R(f), y) = R(ProjPMap2(f, y)), and

(iv) ProjPMap2(|R(f)|, y) = |R(ProjPMap2(f, y))|.
(32) (i) ProjPMap1(|f |, x) = |ProjPMap1(f, x)|, and

(ii) ProjPMap2(|f |, y) = |ProjPMap2(f, y)|.
Let us consider a partial function f from (the real normed space of R) ×

(the real normed space of R) to the real normed space of R, a partial function
g from R× R to R, and an element t of R. Now we state the propositions:

(33) If f is continuous on dom f and f = g, then ProjPMap1(g, t) is conti-
nuous and ProjPMap2(g, t) is continuous.
Proof: For every real number y0 such that y0 ∈ dom(ProjPMap1(g, t))
holds ProjPMap1(g, t) is continuous in y0. For every real number x0 such
that x0 ∈ dom(ProjPMap2(g, t)) holds ProjPMap2(g, t) is continuous in
x0. �

(34) Suppose f is continuous on dom f and f = g. Then

(i) ProjPMap1(|g|, t) is continuous, and

(ii) ProjPMap2(|g|, t) is continuous.

The theorem is a consequence of (33) and (32).
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(35) Suppose f is uniformly continuous on dom f and f = g. Then

(i) ProjPMap1(g, t) is uniformly continuous, and

(ii) ProjPMap2(g, t) is uniformly continuous.

Proof: For every real number r such that 0 < r there exists a real number
s such that 0 < s and for every real numbers y1, y2 such that y1, y2 ∈
dom(ProjPMap1(g, t)) and |y1 − y2| < s holds |(ProjPMap1(g, t))(y1) −
(ProjPMap1(g, t))(y2)| < r. For every real number r such that 0 < r

there exists a real number s such that 0 < s and for every real numbers
x1, x2 such that x1, x2 ∈ dom(ProjPMap2(g, t)) and |x1 − x2| < s holds
|(ProjPMap2(g, t))(x1)− (ProjPMap2(g, t))(x2)| < r by [17, (1)]. �

(36) Let us consider an element x of R, a partial function f from (the real
normed space of R) × (the real normed space of R) to the real normed
space of R, a partial function g from R × R to R, and a partial function
P1 from R to R. Suppose f is continuous on dom f and f = g and P1 =
ProjPMap1(R(g), x). Then P1 is continuous. The theorem is a consequence
of (31) and (33).

(37) Let us consider an element y of R, a partial function f from (the real
normed space of R) × (the real normed space of R) to the real normed
space of R, a partial function g from R × R to R, and a partial function
P2 from R to R. Suppose f is continuous on dom f and f = g and P2 =
ProjPMap2(R(g), y). Then P2 is continuous. The theorem is a consequence
of (31) and (33).

(38) Let us consider an element x of R, a partial function f from (the real
normed space of R) × (the real normed space of R) to the real normed
space of R, a partial function g from R × R to R, and a partial func-
tion P1 from R to R. Suppose f is continuous on dom f and f = g and
P1 = ProjPMap1(|R(g)|, x). Then P1 is continuous. The theorem is a con-
sequence of (31), (32), and (34).

(39) Let us consider an element y of R, a partial function f from (the real
normed space of R) × (the real normed space of R) to the real normed
space of R, a partial function g from R × R to R, and a partial func-
tion p2 from R to R. Suppose f is continuous on dom f and f = g and
p2 = ProjPMap2(|R(g)|, y). Then p2 is continuous. The theorem is a con-
sequence of (31), (32), and (34).
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4. Integral of Continuous Functions of Two Variables

Let us consider a subset I of R, a non empty, closed interval subset J of R,
an element x of R, a partial function f from (the real normed space of R) ×
(the real normed space of R) to the real normed space of R, a partial function
g from R × R to R, and a partial function P1 from R to R. Now we state the
propositions:

(40) Suppose x ∈ I and dom f = I × J and f is continuous on I × J and
f = g and P1 = ProjPMap1(R(g), x). Then

(i) P1�J is bounded, and

(ii) P1 is integrable on J .

The theorem is a consequence of (31), (27), and (33).

(41) Suppose x ∈ I and dom f = I × J and f is continuous on I × J and
f = g and P1 = ProjPMap1(R(g), x). Then

(i) P1 is integrable on L-Meas, and

(ii)
∫
J

P1(x)dx =
∫
P1 d L-Meas, and

(iii)
∫
J

P1(x)dx =
∫

ProjPMap1(R(g), x) d L-Meas, and

(iv)
∫
J

P1(x)dx = (Integral2(L-Meas,R(g)))(x).

The theorem is a consequence of (27) and (40).

Let us consider a non empty, closed interval subset I of R, a subset J of R,
an element y of R, a partial function f from (the real normed space of R) ×
(the real normed space of R) to the real normed space of R, a partial function
g from R × R to R, and a partial function P2 from R to R. Now we state the
propositions:

(42) Suppose y ∈ J and dom f = I × J and f is continuous on I × J and
f = g and P2 = ProjPMap2(R(g), y). Then

(i) P2�I is bounded, and

(ii) P2 is integrable on I.

The theorem is a consequence of (31), (28), and (33).

(43) Suppose y ∈ J and dom f = I × J and f is continuous on I × J and
f = g and P2 = ProjPMap2(R(g), y). Then

(i) P2 is integrable on L-Meas, and
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(ii)
∫
I

P2(x)dx =
∫
P2 d L-Meas, and

(iii)
∫
I

P2(x)dx =
∫

ProjPMap2(R(g), y) d L-Meas, and

(iv)
∫
I

P2(x)dx = (Integral1(L-Meas,R(g)))(y).

The theorem is a consequence of (28) and (42).

(44) Let us consider a subset I of R, a non empty, closed interval subset J of
R, an element x of R, a partial function f from (the real normed space of
R)× (the real normed space of R) to the real normed space of R, a partial
function g from R×R to R, and a partial function P1 from R to R. Suppose
x ∈ I and dom f = I × J and f is continuous on I × J and f = g and
P1 = ProjPMap1(|R(g)|, x). Then

(i) P1�J is bounded, and

(ii) P1 is integrable on J .

The theorem is a consequence of (27) and (38).

(45) Let us consider a subset I of R, a non empty, closed interval subset
J of R, an element x of R, a partial function f from (the real normed
space of R) × (the real normed space of R) to the real normed space of
R, a partial function g from R× R to R, a partial function P1 from R to
R, and an element E of L-Field. Suppose x ∈ I and dom f = I × J and
f is continuous on I × J and f = g and P1 = ProjPMap1(|R(g)|, x) and
E = J . Then P1 is E-measurable. The theorem is a consequence of (27)
and (44).

(46) Let us consider a subset I of R, a non empty, closed interval subset J of
R, an element x of R, a partial function f from (the real normed space of
R)× (the real normed space of R) to the real normed space of R, a partial
function g from R×R to R, and a partial function P1 from R to R. Suppose
x ∈ I and dom f = I × J and f is continuous on I × J and f = g and
P1 = ProjPMap1(|R(g)|, x). Then

(i) P1 is integrable on L-Meas, and

(ii)
∫
J

P1(x)dx =
∫
P1 d L-Meas, and

(iii)
∫
J

P1(x)dx =
∫

ProjPMap1(|R(g)|, x) d L-Meas, and

(iv)
∫
J

P1(x)dx = (Integral2(L-Meas, |R(g)|))(x).
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The theorem is a consequence of (27) and (44).

(47) Let us consider a non empty, closed interval subset I of R, a subset J of
R, an element y of R, a partial function f from (the real normed space of
R)× (the real normed space of R) to the real normed space of R, a partial
function g from R×R to R, and a partial function P2 from R to R. Suppose
y ∈ J and dom f = I × J and f is continuous on I × J and f = g and
P2 = ProjPMap2(|R(g)|, y). Then

(i) P2�I is bounded, and

(ii) P2 is integrable on I.

The theorem is a consequence of (28) and (39).

(48) Let us consider a non empty, closed interval subset I of R, a subset
J of R, an element y of R, a partial function f from (the real normed
space of R) × (the real normed space of R) to the real normed space of
R, a partial function g from R× R to R, a partial function P2 from R to
R, and an element E of L-Field. Suppose y ∈ J and dom f = I × J and
f is continuous on I × J and f = g and P2 = ProjPMap2(|R(g)|, y) and
E = I. Then P2 is E-measurable. The theorem is a consequence of (28)
and (47).

(49) Let us consider a non empty, closed interval subset I of R, a subset J of
R, an element y of R, a partial function f from (the real normed space of
R)× (the real normed space of R) to the real normed space of R, a partial
function g from R×R to R, and a partial function P2 from R to R. Suppose
y ∈ J and dom f = I × J and f is continuous on I × J and f = g and
P2 = ProjPMap2(|R(g)|, y). Then

(i) P2 is integrable on L-Meas, and

(ii)
∫
I

P2(x)dx =
∫
P2 d L-Meas, and

(iii)
∫
I

P2(x)dx =
∫

ProjPMap2(|R(g)|, y) d L-Meas, and

(iv)
∫
I

P2(x)dx = (Integral1(L-Meas, |R(g)|))(y).

The theorem is a consequence of (28) and (47).

(50) Let us consider non empty, closed interval subsets I, J of R, a partial
function f from (the real normed space of R) × (the real normed space
of R) to the real normed space of R, a partial function g from R × R
to R, and an element E of σ(MeasRect(L-Field,L-Field)). Suppose I ×
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J = dom f and f is continuous on I × J and f = g and E = I × J . Then
g is E-measurable. The theorem is a consequence of (17), (24), and (15).

(51) Let us consider a subset I of R, a non empty, closed interval subset J
of R, a partial function f from (the real normed space of R) × (the real
normed space of R) to the real normed space of R, and a partial function
g from R× R to R. Suppose I × J = dom f and f is continuous on I × J
and f = g. Then

(i) Integral2(L-Meas, |R(g)|)�I is a partial function from R to R, and

(ii) Integral2(L-Meas,R(g))�I is a partial function from R to R.

The theorem is a consequence of (30), (46), and (41).

Let us consider non empty, closed interval subsets I, J of R, a partial function
f from (the real normed space of R)× (the real normed space of R) to the real
normed space of R, a partial function g from R×R to R, and a partial function
G2 from R to R. Now we state the propositions:

(52) Suppose I × J = dom f and f is continuous on I × J and f = g and
G2 = Integral2(L-Meas, |R(g)|)�I. Then G2 is continuous.
Proof: Consider c, d being real numbers such that J = [c, d]. For every
real number e such that 0 < e there exists a real number r such that 0 < r

and for every real numbers x1, x2 such that |x2−x1| < r and x1, x2 ∈ I for
every real number y such that y ∈ J holds ||g|(〈〈x2, y〉〉)−|g|(〈〈x1, y〉〉)| < e.
Set R = R(g). For every elements x, y of R such that x ∈ I and y ∈ J
holds (ProjPMap1(|R|, x))(y) = |R|(x, y) and |R|(x, y) = |g(〈〈x, y〉〉)| and
|R|(x, y) = |g|(〈〈x, y〉〉).

For every real number e such that 0 < e there exists a real number
r such that 0 < r and for every elements x1, x2 of R such that |x2 −
x1| < r and x1, x2 ∈ I for every element y of R such that y ∈ J holds
|(ProjPMap1(|R|, x2))(y) − (ProjPMap1(|R|, x1))(y)| < e. For every real
numbers x0, r such that x0 ∈ I and 0 < r there exists a real number s such
that 0 < s and for every real number x1 such that x1 ∈ I and |x1−x0| < s

holds |G2(x1)−G2(x0)| < r. �

(53) Suppose I × J = dom f and f is continuous on I × J and f = g and
G2 = Integral2(L-Meas,R(g))�I. Then G2 is continuous.
Proof: Consider c, d being real numbers such that J = [c, d]. For every
real number e such that 0 < e there exists a real number r such that 0 < r

and for every real numbers x1, x2 such that |x2 − x1| < r and x1, x2 ∈ I
for every real number y such that y ∈ J holds |g(〈〈x2, y〉〉)−g(〈〈x1, y〉〉)| < e.
Set R = R(g).

For every real number e such that 0 < e there exists a real num-
ber r such that 0 < r and for every elements x1, x2 of R such that
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|x2 − x1| < r and x1, x2 ∈ I for every element y of R such that y ∈ J

holds |(ProjPMap1(R, x2))(y) − (ProjPMap1(R, x1))(y)| < e. For every
real numbers x0, r such that x0 ∈ I and 0 < r there exists a real number
s such that 0 < s and for every real number x1 such that x1 ∈ I and
|x1 − x0| < s holds |G2(x1)−G2(x0)| < r. �

(54) Let us consider non empty, closed interval subsets I, J of R, a partial
function g from (the real normed space of R)× (the real normed space of
R) to the real normed space of R, and a partial function f from R×R to
R. Suppose I × J = dom g and g is continuous on I × J and g = f . Then

(i) Integral1(L-Meas, |R(f)|)�J is a partial function from R to R, and

(ii) Integral1(L-Meas,R(f))�J is a partial function from R to R.

The theorem is a consequence of (30), (49), and (43).

Let us consider non empty, closed interval subsets I, J of R, a partial function
f from (the real normed space of R)× (the real normed space of R) to the real
normed space of R, a partial function g from R×R to R, and a partial function
G1 from R to R. Now we state the propositions:

(55) Suppose I × J = dom f and f is continuous on I × J and f = g and
G1 = Integral1(L-Meas, |R(g)|)�J . Then G1 is continuous.
Proof: Consider a, b being real numbers such that I = [a, b]. For every
real number e such that 0 < e there exists a real number r such that 0 < r

and for every real numbers y1, y2 such that |y2−y1| < r and y1, y2 ∈ J for
every real number x such that x ∈ I holds ||g|(〈〈x, y2〉〉)− |g|(〈〈x, y1〉〉)| < e.
Set R = R(g). For every elements x, y of R such that x ∈ I and y ∈ J
holds (ProjPMap2(|R|, y))(x) = |R|(x, y) and |R|(x, y) = |g(〈〈x, y〉〉)| and
|R|(x, y) = |g|(〈〈x, y〉〉).

For every real number e such that 0 < e there exists a real number
r such that 0 < r and for every elements y1, y2 of R such that |y2 −
y1| < r and y1, y2 ∈ J for every element x of R such that x ∈ I holds
|(ProjPMap2(|R|, y2))(x) − (ProjPMap2(|R|, y1))(x)| < e. For every real
numbers y0, r such that y0 ∈ J and 0 < r there exists a real number s such
that 0 < s and for every real number y1 such that y1 ∈ J and |y1−y0| < s

holds |G1(y1)−G1(y0)| < r. �

(56) Suppose I × J = dom f and f is continuous on I × J and f = g and
G1 = Integral1(L-Meas,R(g))�J . Then G1 is continuous.
Proof: Consider a, b being real numbers such that I = [a, b]. For every
real number e such that 0 < e there exists a real number r such that 0 < r

and for every real numbers y1, y2 such that |y2−y1| < r and y1, y2 ∈ J for
every real number x such that x ∈ I holds |g(〈〈x, y2〉〉) − g(〈〈x, y1〉〉)| < e.
Set R = R(g).
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For every real number e such that 0 < e there exists a real num-
ber r such that 0 < r and for every elements y1, y2 of R such that
|y2 − y1| < r and y1, y2 ∈ J for every element x of R such that x ∈ I

holds |(ProjPMap2(R, y2))(x) − (ProjPMap2(R, y1))(x)| < e. For every
real numbers y0, r such that y0 ∈ J and 0 < r there exists a real number
s such that 0 < s and for every real number y1 such that y1 ∈ J and
|y1 − y0| < s holds |G1(y1)−G1(y0)| < r. �

(57) Let us consider non empty, closed interval subsets I, J of R, a partial
function f from (the real normed space of R)× (the real normed space of
R) to the real normed space of R, and a partial function g from R×R to
R. Suppose I × J = dom f and f is continuous on I × J and f = g. Then

(i) g is integrable on ProdMeas(L-Meas,L-Meas), and

(ii) for every element x of R, (Integral2(L-Meas, |R(g)|))(x) < +∞, and

(iii) for every element y of R, (Integral1(L-Meas, |R(g)|))(y) < +∞, and

(iv) for every element U of L-Field, Integral2(L-Meas,R(g)) is U -measu-
rable, and

(v) for every element V of L-Field, Integral1(L-Meas,R(g)) is V -measu-
rable, and

(vi) Integral2(L-Meas,R(g)) is integrable on L-Meas, and

(vii) Integral1(L-Meas,R(g)) is integrable on L-Meas, and

(viii)
∫
g d ProdMeas(L-Meas,L-Meas) =∫
Integral2(L-Meas,R(g)) d L-Meas, and

(ix)
∫
g d ProdMeas(L-Meas,L-Meas) =∫
Integral1(L-Meas,R(g)) d L-Meas.

(58) Let us consider non empty, closed interval subsets I, J of R, a partial
function f from (the real normed space of R)× (the real normed space of
R) to the real normed space of R, a partial function g from R × R to R,
and a partial function G2 from R to R. Suppose I × J = dom f and f is
continuous on I×J and f = g and G2 = Integral2(L-Meas,R(g))�I. Then∫

R(g) d ProdMeas(L-Meas,L-Meas) =
∫
I

G2(x)dx.

Proof: Set R = R(g). Set N1 = R \ I. Set R2 = Integral2(L-Meas, R).
Set F1 = R2�N1. G2 is continuous. For every element x of R such that
x ∈ domF1 holds F1(x) = 0. �

(59) Let us consider non empty, closed interval subsets I, J of R, a partial
function f from (the real normed space of R) × (the real normed space
of R) to the real normed space of R, a partial function g from R × R to
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R, and a partial function G1 from R to R. Suppose I × J = dom f and
f is continuous on I × J and f = g and G1 = Integral1(L-Meas,R(g))�J .

Then
∫

R(g) d ProdMeas(L-Meas,L-Meas) =
∫
J

G1(x)dx.

Proof: Set R = R(g). Set N2 = R \ J . Set R1 = Integral1(L-Meas, R).
Set F1 = R1�N2. G1�J is bounded and G1 is integrable on J . For every
element y of R such that y ∈ domF1 holds F1(y) = 0. �
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