Elementary Number Theory Problems. Part VII

Artur Korniłowicz
Institute of Computer Science
University of Białystok
Poland

Abstract

Summary. In this paper problems $48,80,87,89$, and 124 from [7] are formalized, using the Mizar formalism [1, [2, , [4. The work is natural continuation of $[5$ and 3 as suggested in 6.

MSC: 11A41 03B35 68 V 20
Keywords: number theory; divisibility; primes
MML identifier: NUMBERO7, version: 8.1.12 5.74.1441

1. Preliminaries

From now on X denotes a set, a, b, c, k, m, n denote natural numbers, i, j denote integers, r denotes a real number, and p, p_{1}, p_{2} denote prime numbers.

Now we state the propositions:
(1) $\operatorname{gcd}(m, m \cdot n)=m$.
(2) If $m \neq 1$, then m and $m \cdot n$ are not relatively prime.
(3) If $i \neq-1$ and $i \neq 1$ and $i \mid j$, then $i \nmid j+1$.
(4) If $i \neq-1$ and $i \neq 1$ and $i \mid j$, then $i \nmid j-1$.
(5) If $i \mid j$, then i and $j+1$ are relatively prime.

Proof: For every integer m such that $m \mid i$ and $m \mid j+1$ holds $m \mid 1$ by [8, (1)].
(6) If $i \mid j$, then i and $j-1$ are relatively prime.

Proof: For every integer m such that $m \mid i$ and $m \mid j-1$ holds $m \mid 1$.
(7) If $a+b+c$ is odd and a, b, c are mutually coprime, then a is odd and b is odd and c is odd.
(8) (i) $4 \cdot n \bmod 8=0$, or
(ii) $4 \cdot n \bmod 8=4$.
(9) If $n \mid 2$, then $n=1$ or $n=2$.
(10) If $n \mid 6$, then $n=1$ or $n=2$ or $n=3$ or $n=6$.
(11) If $n \mid 9$, then $n=1$ or $n=3$ or $n=9$.
(12) If $n \mid 10$, then $n=1$ or $n=2$ or $n=5$ or $n=10$.
(13) If $n \mid 25$, then $n=1$ or $n=5$ or $n=25$.
(14) If $n \mid 26$, then $n=1$ or $n=2$ or $n=13$ or $n=26$.
(15) If $n \mid 36$, then $n=1$ or $n=2$ or $n=3$ or $n=4$ or $n=6$ or $n=9$ or $n=12$ or $n=18$ or $n=36$.
(16) If $n \mid 50$, then $n=1$ or $n=2$ or $n=5$ or $n=10$ or $n=25$ or $n=50$.
(17) If $n \mid 65$, then $n=1$ or $n=5$ or $n=13$ or $n=65$.
(18) If $n \mid 82$, then $n=1$ or $n=2$ or $n=41$ or $n=82$.
(19) If $n \mid 122$, then $n=1$ or $n=2$ or $n=61$ or $n=122$.
(20) If $n \mid 145$, then $n=1$ or $n=5$ or $n=29$ or $n=145$.
(21) If $n \mid 226$, then $n=1$ or $n=2$ or $n=113$ or $n=226$.
(22) If $n \mid 325$, then $n=1$ or $n=5$ or $n=13$ or $n=25$ or $n=65$ or $n=325$.
(23) If $n \mid 362$, then $n=1$ or $n=2$ or $n=181$ or $n=362$.
(24) If $n \mid 485$, then $n=1$ or $n=5$ or $n=97$ or $n=485$.
(25) If $n \mid 626$, then $n=1$ or $n=2$ or $n=313$ or $n=626$.
(26) If $m \cdot n=p$, then $m=1$ and $n=p$ or $m=p$ and $n=1$.
(27) If $m \cdot n=10$, then $m=1$ and $n=10$ or $m=2$ and $n=5$ or $m=5$ and $n=2$ or $m=10$ and $n=1$. The theorem is a consequence of (12).
(28) If $m \cdot n=25$, then $m=1$ and $n=25$ or $m=5$ and $n=5$ or $m=25$ and $n=1$. The theorem is a consequence of (13).
(29) If $m \cdot n=26$, then $m=1$ and $n=26$ or $m=2$ and $n=13$ or $m=13$ and $n=2$ or $m=26$ and $n=1$. The theorem is a consequence of (14).
(30) If $m \cdot n=50$, then $m=1$ and $n=50$ or $m=2$ and $n=25$ or $m=5$ and $n=10$ or $m=10$ and $n=5$ or $m=25$ and $n=2$ or $m=50$ and $n=1$. The theorem is a consequence of (16).
(31) If $m \cdot n=65$, then $m=1$ and $n=65$ or $m=5$ and $n=13$ or $m=13$ and $n=5$ or $m=65$ and $n=1$. The theorem is a consequence of (17).
(32) If $m \cdot n=82$, then $m=1$ and $n=82$ or $m=2$ and $n=41$ or $m=41$ and $n=2$ or $m=82$ and $n=1$. The theorem is a consequence of (18).
(33) If $m \cdot n=122$, then $m=1$ and $n=122$ or $m=2$ and $n=61$ or $m=61$ and $n=2$ or $m=122$ and $n=1$. The theorem is a consequence of (19).
(34) If $m \cdot n=145$, then $m=1$ and $n=145$ or $m=5$ and $n=29$ or $m=29$ and $n=5$ or $m=145$ and $n=1$. The theorem is a consequence of (20).
(35) If $m \cdot n=226$, then $m=1$ and $n=226$ or $m=2$ and $n=113$ or $m=113$ and $n=2$ or $m=226$ and $n=1$. The theorem is a consequence of (21).
(36) If $m \cdot n=325$, then $m=1$ and $n=325$ or $m=5$ and $n=65$ or $m=13$ and $n=25$ or $m=25$ and $n=13$ or $m=65$ and $n=5$ or $m=325$ and $n=1$. The theorem is a consequence of (22).
(37) If $m \cdot n=362$, then $m=1$ and $n=362$ or $m=2$ and $n=181$ or $m=181$ and $n=2$ or $m=362$ and $n=1$. The theorem is a consequence of (23).
(38) If $m \cdot n=485$, then $m=1$ and $n=485$ or $m=5$ and $n=97$ or $m=97$ and $n=5$ or $m=485$ and $n=1$. The theorem is a consequence of (24).
(39) If $m \cdot n=626$, then $m=1$ and $n=626$ or $m=2$ and $n=313$ or $m=313$ and $n=2$ or $m=626$ and $n=1$. The theorem is a consequence of (25).
(40) If $p_{1} \neq p_{2}$, then $2 \leqslant p_{1}$ and $3 \leqslant p_{2}$ or $3 \leqslant p_{1}$ and $2 \leqslant p_{2}$.

2. Problem 48

Let n be a natural number. We say that n satisfies Sierpiński Problem 48 if and only if
(Def. 1) there exist natural numbers a, b, c such that $n=a+b+c$ and $a>1$ and $b>1$ and $c>1$ and a, b, c are mutually coprime.

Now we state the propositions:
(41) If n is even and $n>8$, then n satisfies Sierpiński Problem 48. The theorem is a consequence of (5) and (6).
(42) If $n>17$, then n satisfies Sierpiński Problem 48. The theorem is a consequence of (41), (10), (4), (11), (9), (6), (5), and (3).
(43) 17 doesn't satisfy Sierpiński Problem 48. The theorem is a consequence of (7) and (1).

3. Problem 80

Now we state the propositions:
(44) Let us consider prime numbers p, q, and a natural number n. Suppose $p \cdot(p+1)+q \cdot(q+1)=n \cdot(n+1)$. Then
(i) $p=2$ and $q=2$ and $n=3$, or
(ii) $p=5$ and $q=3$ and $n=6$, or
(iii) $p=3$ and $q=5$ and $n=6$.

The theorem is a consequence of (26).
(45) Let us consider prime numbers p, q, r. If $p \cdot(p+1)+q \cdot(q+1)=r \cdot(r+1)$, then $p=q=2$ and $r=3$. The theorem is a consequence of (44).

4. Problem 87

Let n be a natural number. We say that n satisfies Sierpiński Problem 87a if and only if
(Def. 2) there exist prime numbers a, b, c such that a, b, c are mutually different and $n^{2}+1=a \cdot b \cdot c$.
We say that n satisfies Sierpinski Problem 87b if and only if
(Def. 3) there exist odd prime numbers a, b, c such that a, b, c are mutually different and $n^{2}+1=a \cdot b \cdot c$.

Now we state the propositions:
(46) $13^{2}+1=2 \cdot 5 \cdot 17$.
(47) 13 satisfies Sierpiński Problem 87a. The theorem is a consequence of (46).
(48) $17^{2}+1=2 \cdot 5 \cdot 29$.
(49) 17 satisfies Sierpiński Problem 87a. The theorem is a consequence of (48).
(50) $21^{2}+1=2 \cdot 13 \cdot 17$.
(51) 21 satisfies Sierpiński Problem 87a. The theorem is a consequence of (50).
(52) $23^{2}+1=2 \cdot 5 \cdot 53$.
(53) 23 satisfies Sierpiński Problem 87a. The theorem is a consequence of (52).
(54) $27^{2}+1=2 \cdot 5 \cdot 73$.
(55) 27 satisfies Sierpiński Problem 87a. The theorem is a consequence of (54).
(56) If n satisfies Sierpiński Problem 87 a and $n \leqslant 27$, then $n \in\{13,17,21,23,27\}$.
(57) $112^{2}+1=5 \cdot 13 \cdot 193$.
(58) 112 satisfies Sierpiński Problem 87b. The theorem is a consequence of (57).

5. Problem 89

Let us consider n. We say that n has exactly two different prime divisors if and only if
(Def. 4) there exist prime numbers p, q such that $p \neq q$ and $p \mid n$ and $q \mid n$ and for every prime number r such that $r \neq p$ and $r \neq q$ holds $r \nmid n$.
Let n be a complex number. We say that n is a product of two different primes if and only if
(Def. 5) there exist prime numbers p, q such that $p \neq q$ and $n=p \cdot q$.
Now we state the propositions:
(59) Let us consider prime numbers p, q, and natural numbers a, b. Suppose $a \neq 1$ and $b \neq 1$ and $p \cdot q=a \cdot b$. Then
(i) $p=a$ and $q=b$, or
(ii) $p=b$ and $q=a$.
(60) If n is a product of two different primes, then for every a and b such that $a \neq 1$ and $b \neq 1$ and $n=a \cdot b$ holds a is prime and b is prime.
(61) p is not a product of two different primes.
(62) If $p_{1} \neq p_{2}$, then $p_{1} \cdot p_{2}$ is a product of two different primes.
(63) If $a \neq 1$ and $a \neq n$ and a is not prime and $a \mid n$, then n is not a product of two different primes.
(64) $p \cdot p$ is not a product of two different primes.
(65) If n is a product of two different primes, then $n \geqslant 6$. The theorem is a consequence of (40).
Let us consider n. We say that n satisfies Sierpiński Problem 89 if and only if
(Def. 6) n is a product of two different primes and $n+1$ is a product of two different primes and $n+2$ is a product of two different primes.
Now we state the propositions:
(66) 33 satisfies Sierpiński Problem 89.
(67) 85 satisfies Sierpiński Problem 89.
(68) 93 satisfies Sierpiński Problem 89.
(69) 141 satisfies Sierpiński Problem 89.
(70) 201 satisfies Sierpiński Problem 89.
(71) If n satisfies Sierpiński Problem 89 and $n \leqslant 201$, then $n \in\{33,85,93,141,201\}$.
(72) There exists no n such that n satisfies Sierpiński Problem 89 and $n+1$ satisfies Sierpiński Problem 89 and $n+2$ satisfies Sierpiński Problem 89 and $n+3$ satisfies Sierpiński Problem 89 .
(73) (i) $33=3 \cdot 11$, and
(ii) 33 has exactly two different prime divisors.
(74) (i) $34=2 \cdot 17$, and
(ii) 34 has exactly two different prime divisors.
(75) (i) $35=5 \cdot 7$, and
(ii) 35 has exactly two different prime divisors.
(76) (i) $36=2 \cdot 2 \cdot 3 \cdot 3$, and
(ii) 36 has exactly two different prime divisors.

The theorem is a consequence of (15).

6. Problem 124

Now we state the propositions:
(77) If $n=28 \cdot k+1$, then $29 \mid\left(2^{2 \cdot n}+1\right)^{2}+2^{2}$.
(78) If $k>0$ and $n=28 \cdot k+1$, then $\left(2^{2 \cdot n}+1\right)^{2}+2^{2}$ is composite. The theorem is a consequence of (77).
(79) $\left\{\left(2^{2 \cdot n}+1\right)^{2}+2^{2}\right.$, where n is a natural number : $\left(2^{2 \cdot n}+1\right)^{2}+2^{2}$ is composite\} is infinite.
Proof: Set $X=\left\{\left(2^{2 \cdot n}+1\right)^{2}+2^{2}\right.$, where n is a natural number: $\left(2^{2 \cdot n}+1\right)^{2}$ $+2^{2}$ is composite $\}$. Set $n=28 \cdot 1+1 .\left(2^{2 \cdot n}+1\right)^{2}+2^{2}$ is composite. X is natural-membered. For every a such that $a \in X$ there exists b such that $b>a$ and $b \in X$.

References

[1] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, Karol Pak, and Josef Urban. Mizar: State-of-the-art and beyond In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, Intelligent Computer Mathematics, volume 9150 of Lecture Notes in Computer Science, pages 261-279. Springer International Publishing, 2015. ISBN 978-3-319-20614-1. doi 10.1007/978-3-319-20615-8_17.
[2] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, and Karol Pąk. The role of the Mizar Mathematical Library for interactive proof development in Mizar. Journal of Automated Reasoning, 61(1):9-32, 2018. do1 10.1007/s10817-017-9440-6
[3] Adam Grabowski. Elementary number theory problems. Part VI. Formalized Mathematics, 30(3):235-244, 2022. doi 10.2478/forma-2022-0019
[4] Artur Korniłowicz. Flexary connectives in Mizar. Computer Languages, Systems 83 Structures, 44:238-250, December 2015. doi 10.1016/J.cl.2015.07.002
[5] Artur Korniłowicz and Adam Naumowicz. Elementary number theory problems. Part V. Formalized Mathematics, 30(3):229-234, 2022. doi 10.2478/forma-2022-0018.
[6] Adam Naumowicz. Dataset description: Formalization of elementary number theory in Mizar. In Christoph Benzmuller and Bruce R. Miller, editors, Intelligent Computer Mathematics - 13th International Conference, CICM 2020, Bertinoro, Italy, July 26-31, 2020, Proceedings, volume 12236 of Lecture Notes in Computer Science, pages 303-308. Springer, 2020. doi 10.1007/978-3-030-53518-6_22.
[7] Wacław Sierpiński. 250 Problems in Elementary Number Theory. Elsevier, 1970.
[8] Li Yan, Xiquan Liang, and Junjie Zhao. Gauss lemma and law of quadratic reciprocity. Formalized Mathematics, 16(1):23-28, 2008. doi 10.2478/v10037-008-0004-4.

