

Elementary Number Theory Problems. Part VII

Artur Korniłowicz[©] Institute of Computer Science University of Białystok Poland

Summary. In this paper problems 48, 80, 87, 89, and 124 from [7] are formalized, using the Mizar formalism [1], [2], [4]. The work is natural continuation of [5] and [3] as suggested in [6].

MSC: 11A41 03B35 68V20 Keywords: number theory; divisibility; primes MML identifier: NUMBER07, version: 8.1.12 5.74.1441

1. Preliminaries

From now on X denotes a set, a, b, c, k, m, n denote natural numbers, i, j denote integers, r denotes a real number, and p, p_1, p_2 denote prime numbers.

Now we state the propositions:

(1) $gcd(m, m \cdot n) = m.$

- (2) If $m \neq 1$, then m and $m \cdot n$ are not relatively prime.
- (3) If $i \neq -1$ and $i \neq 1$ and $i \mid j$, then $i \nmid j + 1$.
- (4) If $i \neq -1$ and $i \neq 1$ and $i \mid j$, then $i \nmid j 1$.
- (5) If i | j, then i and j + 1 are relatively prime.
 PROOF: For every integer m such that m | i and m | j + 1 holds m | 1 by [8, (1)]. □
- (6) If $i \mid j$, then i and j 1 are relatively prime. PROOF: For every integer m such that $m \mid i$ and $m \mid j - 1$ holds $m \mid 1$. \Box

© 2023 The Author(s) / AMU (Association of Mizar Users) under CC BY-SA 3.0 license

- (7) If a + b + c is odd and a, b, c are mutually coprime, then a is odd and b is odd and c is odd.
- (8) (i) $4 \cdot n \mod 8 = 0$, or (ii) $4 \cdot n \mod 8 = 4$.
- (9) If $n \mid 2$, then n = 1 or n = 2.
- (10) If $n \mid 6$, then n = 1 or n = 2 or n = 3 or n = 6.
- (11) If $n \mid 9$, then n = 1 or n = 3 or n = 9.
- (12) If $n \mid 10$, then n = 1 or n = 2 or n = 5 or n = 10.
- (13) If $n \mid 25$, then n = 1 or n = 5 or n = 25.
- (14) If $n \mid 26$, then n = 1 or n = 2 or n = 13 or n = 26.
- (15) If $n \mid 36$, then n = 1 or n = 2 or n = 3 or n = 4 or n = 6 or n = 9 or n = 12 or n = 18 or n = 36.
- (16) If $n \mid 50$, then n = 1 or n = 2 or n = 5 or n = 10 or n = 25 or n = 50.
- (17) If $n \mid 65$, then n = 1 or n = 5 or n = 13 or n = 65.
- (18) If $n \mid 82$, then n = 1 or n = 2 or n = 41 or n = 82.
- (19) If $n \mid 122$, then n = 1 or n = 2 or n = 61 or n = 122.
- (20) If $n \mid 145$, then n = 1 or n = 5 or n = 29 or n = 145.
- (21) If $n \mid 226$, then n = 1 or n = 2 or n = 113 or n = 226.
- (22) If $n \mid 325$, then n = 1 or n = 5 or n = 13 or n = 25 or n = 65 or n = 325.
- (23) If $n \mid 362$, then n = 1 or n = 2 or n = 181 or n = 362.
- (24) If $n \mid 485$, then n = 1 or n = 5 or n = 97 or n = 485.
- (25) If $n \mid 626$, then n = 1 or n = 2 or n = 313 or n = 626.
- (26) If $m \cdot n = p$, then m = 1 and n = p or m = p and n = 1.
- (27) If $m \cdot n = 10$, then m = 1 and n = 10 or m = 2 and n = 5 or m = 5 and n = 2 or m = 10 and n = 1. The theorem is a consequence of (12).
- (28) If $m \cdot n = 25$, then m = 1 and n = 25 or m = 5 and n = 5 or m = 25 and n = 1. The theorem is a consequence of (13).
- (29) If $m \cdot n = 26$, then m = 1 and n = 26 or m = 2 and n = 13 or m = 13 and n = 2 or m = 26 and n = 1. The theorem is a consequence of (14).
- (30) If $m \cdot n = 50$, then m = 1 and n = 50 or m = 2 and n = 25 or m = 5and n = 10 or m = 10 and n = 5 or m = 25 and n = 2 or m = 50 and n = 1. The theorem is a consequence of (16).
- (31) If $m \cdot n = 65$, then m = 1 and n = 65 or m = 5 and n = 13 or m = 13 and n = 5 or m = 65 and n = 1. The theorem is a consequence of (17).
- (32) If $m \cdot n = 82$, then m = 1 and n = 82 or m = 2 and n = 41 or m = 41 and n = 2 or m = 82 and n = 1. The theorem is a consequence of (18).

- (33) If $m \cdot n = 122$, then m = 1 and n = 122 or m = 2 and n = 61 or m = 61 and n = 2 or m = 122 and n = 1. The theorem is a consequence of (19).
- (34) If $m \cdot n = 145$, then m = 1 and n = 145 or m = 5 and n = 29 or m = 29 and n = 5 or m = 145 and n = 1. The theorem is a consequence of (20).
- (35) If $m \cdot n = 226$, then m = 1 and n = 226 or m = 2 and n = 113 or m = 113 and n = 2 or m = 226 and n = 1. The theorem is a consequence of (21).
- (36) If $m \cdot n = 325$, then m = 1 and n = 325 or m = 5 and n = 65 or m = 13and n = 25 or m = 25 and n = 13 or m = 65 and n = 5 or m = 325 and n = 1. The theorem is a consequence of (22).
- (37) If $m \cdot n = 362$, then m = 1 and n = 362 or m = 2 and n = 181 or m = 181 and n = 2 or m = 362 and n = 1. The theorem is a consequence of (23).
- (38) If $m \cdot n = 485$, then m = 1 and n = 485 or m = 5 and n = 97 or m = 97 and n = 5 or m = 485 and n = 1. The theorem is a consequence of (24).
- (39) If $m \cdot n = 626$, then m = 1 and n = 626 or m = 2 and n = 313 or m = 313 and n = 2 or m = 626 and n = 1. The theorem is a consequence of (25).
- (40) If $p_1 \neq p_2$, then $2 \leq p_1$ and $3 \leq p_2$ or $3 \leq p_1$ and $2 \leq p_2$.

Let n be a natural number. We say that n satisfies Sierpiński Problem 48 if and only if

(Def. 1) there exist natural numbers a, b, c such that n = a + b + c and a > 1and b > 1 and c > 1 and a, b, c are mutually coprime.

Now we state the propositions:

- (41) If n is even and n > 8, then n satisfies Sierpiński Problem 48. The theorem is a consequence of (5) and (6).
- (42) If n > 17, then n satisfies Sierpiński Problem 48. The theorem is a consequence of (41), (10), (4), (11), (9), (6), (5), and (3).
- (43) 17 doesn't satisfy Sierpiński Problem 48. The theorem is a consequence of (7) and (1).

Now we state the propositions:

- (44) Let us consider prime numbers p, q, and a natural number n. Suppose $p \cdot (p+1) + q \cdot (q+1) = n \cdot (n+1)$. Then
 - (i) p = 2 and q = 2 and n = 3, or
 - (ii) p = 5 and q = 3 and n = 6, or
 - (iii) p = 3 and q = 5 and n = 6.

The theorem is a consequence of (26).

(45) Let us consider prime numbers p, q, r. If $p \cdot (p+1) + q \cdot (q+1) = r \cdot (r+1)$, then p = q = 2 and r = 3. The theorem is a consequence of (44).

4. Problem 87

Let n be a natural number. We say that n satisfies Sierpiński Problem 87a if and only if

(Def. 2) there exist prime numbers a, b, c such that a, b, c are mutually different and $n^2 + 1 = a \cdot b \cdot c$.

We say that n satisfies Sierpiński Problem 87b if and only if

(Def. 3) there exist odd prime numbers a, b, c such that a, b, c are mutually different and $n^2 + 1 = a \cdot b \cdot c$.

Now we state the propositions:

- $(46) \quad 13^2 + 1 = 2 \cdot 5 \cdot 17.$
- (47) 13 satisfies Sierpiński Problem 87a. The theorem is a consequence of (46).
- $(48) \quad 17^2 + 1 = 2 \cdot 5 \cdot 29.$
- (49) 17 satisfies Sierpiński Problem 87a. The theorem is a consequence of (48).
- $(50) \quad 21^2 + 1 = 2 \cdot 13 \cdot 17.$
- (51) 21 satisfies Sierpiński Problem 87a. The theorem is a consequence of (50).
- $(52) \quad 23^2 + 1 = 2 \cdot 5 \cdot 53.$
- (53) 23 satisfies Sierpiński Problem 87a. The theorem is a consequence of (52).
- $(54) \quad 27^2 + 1 = 2 \cdot 5 \cdot 73.$

- (55) 27 satisfies Sierpiński Problem 87a. The theorem is a consequence of (54).
- (56) If *n* satisfies Sierpiński Problem 87a and $n \leq 27$, then $n \in \{13, 17, 21, 23, 27\}$.
- $(57) \quad 112^2 + 1 = 5 \cdot 13 \cdot 193.$
- (58) 112 satisfies Sierpiński Problem 87b. The theorem is a consequence of (57).

Let us consider n. We say that n has exactly two different prime divisors if and only if

(Def. 4) there exist prime numbers p, q such that $p \neq q$ and $p \mid n$ and $q \mid n$ and for every prime number r such that $r \neq p$ and $r \neq q$ holds $r \nmid n$.

Let n be a complex number. We say that n is a product of two different primes if and only if

(Def. 5) there exist prime numbers p, q such that $p \neq q$ and $n = p \cdot q$.

Now we state the propositions:

- (59) Let us consider prime numbers p, q, and natural numbers a, b. Suppose $a \neq 1$ and $b \neq 1$ and $p \cdot q = a \cdot b$. Then
 - (i) p = a and q = b, or
 - (ii) p = b and q = a.
- (60) If n is a product of two different primes, then for every a and b such that $a \neq 1$ and $b \neq 1$ and $n = a \cdot b$ holds a is prime and b is prime.
- (61) p is not a product of two different primes.
- (62) If $p_1 \neq p_2$, then $p_1 \cdot p_2$ is a product of two different primes.
- (63) If $a \neq 1$ and $a \neq n$ and a is not prime and $a \mid n$, then n is not a product of two different primes.
- (64) $p \cdot p$ is not a product of two different primes.
- (65) If n is a product of two different primes, then $n \ge 6$. The theorem is a consequence of (40).

Let us consider n. We say that n satisfies Sierpiński Problem 89 if and only if

(Def. 6) n is a product of two different primes and n + 1 is a product of two different primes and n + 2 is a product of two different primes.

Now we state the propositions:

- (66) 33 satisfies Sierpiński Problem 89.
- (67) 85 satisfies Sierpiński Problem 89.
- (68) 93 satisfies Sierpiński Problem 89.
- (69) 141 satisfies Sierpiński Problem 89.
- (70) 201 satisfies Sierpiński Problem 89.
- (71) If *n* satisfies Sierpiński Problem 89 and $n \leq 201$, then $n \in \{33, 85, 93, 141, 201\}$.
- (72) There exists no n such that n satisfies Sierpiński Problem 89 and n + 1 satisfies Sierpiński Problem 89 and n + 2 satisfies Sierpiński Problem 89 and n + 3 satisfies Sierpiński Problem 89.
- (73) (i) $33 = 3 \cdot 11$, and
 - (ii) 33 has exactly two different prime divisors.
- (74) (i) $34 = 2 \cdot 17$, and
 - (ii) 34 has exactly two different prime divisors.

(75) (i)
$$35 = 5 \cdot 7$$
, and

- (ii) 35 has exactly two different prime divisors.
- (76) (i) $36 = 2 \cdot 2 \cdot 3 \cdot 3$, and
 - (ii) 36 has exactly two different prime divisors.The theorem is a consequence of (15).

Now we state the propositions:

- (77) If $n = 28 \cdot k + 1$, then $29 \mid (2^{2 \cdot n} + 1)^2 + 2^2$.
- (78) If k > 0 and $n = 28 \cdot k + 1$, then $(2^{2 \cdot n} + 1)^2 + 2^2$ is composite. The theorem is a consequence of (77).
- (79) $\{(2^{2 \cdot n} + 1)^2 + 2^2, \text{ where } n \text{ is a natural number }: (2^{2 \cdot n} + 1)^2 + 2^2 \text{ is composite}\}$ is infinite.

PROOF: Set $X = \{(2^{2 \cdot n} + 1)^2 + 2^2, \text{ where } n \text{ is a natural number}: (2^{2 \cdot n} + 1)^2 + 2^2 \text{ is composite}\}$. Set $n = 28 \cdot 1 + 1$. $(2^{2 \cdot n} + 1)^2 + 2^2$ is composite. X is natural-membered. For every a such that $a \in X$ there exists b such that b > a and $b \in X$. \Box

References

- Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, Karol Pak, and Josef Urban. Mizar: State-of-the-art and beyond. In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, *Intelligent Computer Mathematics*, volume 9150 of *Lecture Notes in Computer Science*, pages 261–279. Springer International Publishing, 2015. ISBN 978-3-319-20614-1. doi:10.1007/978-3-319-20615-8_17.
- [2] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, and Karol Pąk. The role of the Mizar Mathematical Library for interactive proof development in Mizar. *Journal of Automated Reasoning*, 61(1):9–32, 2018. doi:10.1007/s10817-017-9440-6.
- [3] Adam Grabowski. Elementary number theory problems. Part VI. Formalized Mathematics, 30(3):235-244, 2022. doi:10.2478/forma-2022-0019.
- [4] Artur Korniłowicz. Flexary connectives in Mizar. Computer Languages, Systems & Structures, 44:238–250, December 2015. doi:10.1016/j.cl.2015.07.002.
- [5] Artur Korniłowicz and Adam Naumowicz. Elementary number theory problems. Part V. Formalized Mathematics, 30(3):229–234, 2022. doi:10.2478/forma-2022-0018.
- [6] Adam Naumowicz. Dataset description: Formalization of elementary number theory in Mizar. In Christoph Benzmüller and Bruce R. Miller, editors, Intelligent Computer Mathematics – 13th International Conference, CICM 2020, Bertinoro, Italy, July 26–31, 2020, Proceedings, volume 12236 of Lecture Notes in Computer Science, pages 303–308. Springer, 2020. doi:10.1007/978-3-030-53518-6_22.
- [7] Wacław Sierpiński. 250 Problems in Elementary Number Theory. Elsevier, 1970.
- [8] Li Yan, Xiquan Liang, and Junjie Zhao. Gauss lemma and law of quadratic reciprocity. Formalized Mathematics, 16(1):23–28, 2008. doi:10.2478/v10037-008-0004-4.

Accepted March 31, 2023