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Summary. In this paper problems 48, 80, 87, 89, and 124 from [7] are for-
malized, using the Mizar formalism [1], [2], [4]. The work is natural continuation
of [5] and [3] as suggested in [6].
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1. Preliminaries

From now on X denotes a set, a, b, c, k, m, n denote natural numbers, i, j
denote integers, r denotes a real number, and p, p1, p2 denote prime numbers.

Now we state the propositions:

(1) gcd(m,m · n) = m.

(2) If m 6= 1, then m and m · n are not relatively prime.

(3) If i 6= −1 and i 6= 1 and i | j, then i - j + 1.

(4) If i 6= −1 and i 6= 1 and i | j, then i - j − 1.

(5) If i | j, then i and j + 1 are relatively prime.
Proof: For every integer m such that m | i and m | j + 1 holds m | 1 by
[8, (1)]. �

(6) If i | j, then i and j − 1 are relatively prime.
Proof: For every integer m such that m | i and m | j − 1 holds m | 1. �
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(7) If a+ b+ c is odd and a, b, c are mutually coprime, then a is odd and b
is odd and c is odd.

(8) (i) 4 · n mod 8 = 0, or

(ii) 4 · n mod 8 = 4.

(9) If n | 2, then n = 1 or n = 2.

(10) If n | 6, then n = 1 or n = 2 or n = 3 or n = 6.

(11) If n | 9, then n = 1 or n = 3 or n = 9.

(12) If n | 10, then n = 1 or n = 2 or n = 5 or n = 10.

(13) If n | 25, then n = 1 or n = 5 or n = 25.

(14) If n | 26, then n = 1 or n = 2 or n = 13 or n = 26.

(15) If n | 36, then n = 1 or n = 2 or n = 3 or n = 4 or n = 6 or n = 9
or n = 12 or n = 18 or n = 36.

(16) If n | 50, then n = 1 or n = 2 or n = 5 or n = 10 or n = 25 or n = 50.

(17) If n | 65, then n = 1 or n = 5 or n = 13 or n = 65.

(18) If n | 82, then n = 1 or n = 2 or n = 41 or n = 82.

(19) If n | 122, then n = 1 or n = 2 or n = 61 or n = 122.

(20) If n | 145, then n = 1 or n = 5 or n = 29 or n = 145.

(21) If n | 226, then n = 1 or n = 2 or n = 113 or n = 226.

(22) If n | 325, then n = 1 or n = 5 or n = 13 or n = 25 or n = 65 or n = 325.

(23) If n | 362, then n = 1 or n = 2 or n = 181 or n = 362.

(24) If n | 485, then n = 1 or n = 5 or n = 97 or n = 485.

(25) If n | 626, then n = 1 or n = 2 or n = 313 or n = 626.

(26) If m · n = p, then m = 1 and n = p or m = p and n = 1.

(27) If m · n = 10, then m = 1 and n = 10 or m = 2 and n = 5 or m = 5 and
n = 2 or m = 10 and n = 1. The theorem is a consequence of (12).

(28) If m · n = 25, then m = 1 and n = 25 or m = 5 and n = 5 or m = 25
and n = 1. The theorem is a consequence of (13).

(29) If m · n = 26, then m = 1 and n = 26 or m = 2 and n = 13 or m = 13
and n = 2 or m = 26 and n = 1. The theorem is a consequence of (14).

(30) If m · n = 50, then m = 1 and n = 50 or m = 2 and n = 25 or m = 5
and n = 10 or m = 10 and n = 5 or m = 25 and n = 2 or m = 50 and
n = 1. The theorem is a consequence of (16).

(31) If m · n = 65, then m = 1 and n = 65 or m = 5 and n = 13 or m = 13
and n = 5 or m = 65 and n = 1. The theorem is a consequence of (17).

(32) If m · n = 82, then m = 1 and n = 82 or m = 2 and n = 41 or m = 41
and n = 2 or m = 82 and n = 1. The theorem is a consequence of (18).
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(33) If m · n = 122, then m = 1 and n = 122 or m = 2 and n = 61 or m = 61
and n = 2 or m = 122 and n = 1. The theorem is a consequence of (19).

(34) If m · n = 145, then m = 1 and n = 145 or m = 5 and n = 29 or m = 29
and n = 5 or m = 145 and n = 1. The theorem is a consequence of (20).

(35) If m · n = 226, then m = 1 and n = 226 or m = 2 and n = 113 or
m = 113 and n = 2 or m = 226 and n = 1. The theorem is a consequence
of (21).

(36) If m · n = 325, then m = 1 and n = 325 or m = 5 and n = 65 or m = 13
and n = 25 or m = 25 and n = 13 or m = 65 and n = 5 or m = 325 and
n = 1. The theorem is a consequence of (22).

(37) If m · n = 362, then m = 1 and n = 362 or m = 2 and n = 181 or
m = 181 and n = 2 or m = 362 and n = 1. The theorem is a consequence
of (23).

(38) If m · n = 485, then m = 1 and n = 485 or m = 5 and n = 97 or m = 97
and n = 5 or m = 485 and n = 1. The theorem is a consequence of (24).

(39) If m · n = 626, then m = 1 and n = 626 or m = 2 and n = 313 or
m = 313 and n = 2 or m = 626 and n = 1. The theorem is a consequence
of (25).

(40) If p1 6= p2, then 2 ¬ p1 and 3 ¬ p2 or 3 ¬ p1 and 2 ¬ p2.

2. Problem 48

Let n be a natural number. We say that n satisfies Sierpiński Problem 48 if
and only if

(Def. 1) there exist natural numbers a, b, c such that n = a + b + c and a > 1
and b > 1 and c > 1 and a, b, c are mutually coprime.

Now we state the propositions:

(41) If n is even and n > 8, then n satisfies Sierpiński Problem 48. The
theorem is a consequence of (5) and (6).

(42) If n > 17, then n satisfies Sierpiński Problem 48. The theorem is a con-
sequence of (41), (10), (4), (11), (9), (6), (5), and (3).

(43) 17 doesn’t satisfy Sierpiński Problem 48. The theorem is a consequence
of (7) and (1).
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3. Problem 80

Now we state the propositions:

(44) Let us consider prime numbers p, q, and a natural number n. Suppose
p · (p+ 1) + q · (q + 1) = n · (n+ 1). Then

(i) p = 2 and q = 2 and n = 3, or

(ii) p = 5 and q = 3 and n = 6, or

(iii) p = 3 and q = 5 and n = 6.

The theorem is a consequence of (26).

(45) Let us consider prime numbers p, q, r. If p ·(p+1)+q ·(q+1) = r ·(r+1),
then p = q = 2 and r = 3. The theorem is a consequence of (44).

4. Problem 87

Let n be a natural number. We say that n satisfies Sierpiński Problem 87a
if and only if

(Def. 2) there exist prime numbers a, b, c such that a, b, c are mutually different
and n2 + 1 = a · b · c.

We say that n satisfies Sierpiński Problem 87b if and only if

(Def. 3) there exist odd prime numbers a, b, c such that a, b, c are mutually
different and n2 + 1 = a · b · c.

Now we state the propositions:

(46) 132 + 1 = 2 · 5 · 17.

(47) 13 satisfies Sierpiński Problem 87a. The theorem is a consequence of
(46).

(48) 172 + 1 = 2 · 5 · 29.

(49) 17 satisfies Sierpiński Problem 87a. The theorem is a consequence of
(48).

(50) 212 + 1 = 2 · 13 · 17.

(51) 21 satisfies Sierpiński Problem 87a. The theorem is a consequence of
(50).

(52) 232 + 1 = 2 · 5 · 53.

(53) 23 satisfies Sierpiński Problem 87a. The theorem is a consequence of
(52).

(54) 272 + 1 = 2 · 5 · 73.
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(55) 27 satisfies Sierpiński Problem 87a. The theorem is a consequence of
(54).

(56) If n satisfies Sierpiński Problem 87a and n ¬ 27,
then n ∈ {13, 17, 21, 23, 27}.

(57) 1122 + 1 = 5 · 13 · 193.

(58) 112 satisfies Sierpiński Problem 87b. The theorem is a consequence of
(57).

5. Problem 89

Let us consider n. We say that n has exactly two different prime divisors if
and only if

(Def. 4) there exist prime numbers p, q such that p 6= q and p | n and q | n and
for every prime number r such that r 6= p and r 6= q holds r - n.

Let n be a complex number. We say that n is a product of two different
primes if and only if

(Def. 5) there exist prime numbers p, q such that p 6= q and n = p · q.
Now we state the propositions:

(59) Let us consider prime numbers p, q, and natural numbers a, b. Suppose
a 6= 1 and b 6= 1 and p · q = a · b. Then

(i) p = a and q = b, or

(ii) p = b and q = a.

(60) If n is a product of two different primes, then for every a and b such that
a 6= 1 and b 6= 1 and n = a · b holds a is prime and b is prime.

(61) p is not a product of two different primes.

(62) If p1 6= p2, then p1 · p2 is a product of two different primes.

(63) If a 6= 1 and a 6= n and a is not prime and a | n, then n is not a product
of two different primes.

(64) p · p is not a product of two different primes.

(65) If n is a product of two different primes, then n  6. The theorem is
a consequence of (40).

Let us consider n. We say that n satisfies Sierpiński Problem 89 if and only
if

(Def. 6) n is a product of two different primes and n + 1 is a product of two
different primes and n+ 2 is a product of two different primes.

Now we state the propositions:
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(66) 33 satisfies Sierpiński Problem 89.

(67) 85 satisfies Sierpiński Problem 89.

(68) 93 satisfies Sierpiński Problem 89.

(69) 141 satisfies Sierpiński Problem 89.

(70) 201 satisfies Sierpiński Problem 89.

(71) If n satisfies Sierpiński Problem 89 and n ¬ 201,
then n ∈ {33, 85, 93, 141, 201}.

(72) There exists no n such that n satisfies Sierpiński Problem 89 and n+ 1
satisfies Sierpiński Problem 89 and n + 2 satisfies Sierpiński Problem 89
and n+ 3 satisfies Sierpiński Problem 89.

(73) (i) 33 = 3 · 11, and

(ii) 33 has exactly two different prime divisors.

(74) (i) 34 = 2 · 17, and

(ii) 34 has exactly two different prime divisors.

(75) (i) 35 = 5 · 7, and

(ii) 35 has exactly two different prime divisors.

(76) (i) 36 = 2 · 2 · 3 · 3, and

(ii) 36 has exactly two different prime divisors.
The theorem is a consequence of (15).

6. Problem 124

Now we state the propositions:

(77) If n = 28 · k + 1, then 29 | (22·n + 1)2 + 22.

(78) If k > 0 and n = 28 · k + 1, then (22·n + 1)2 + 22 is composite. The
theorem is a consequence of (77).

(79) {(22·n + 1)2 + 22, where n is a natural number : (22·n + 1)2 + 22 is com-
posite} is infinite.
Proof: SetX = {(22·n + 1)2+22, where n is a natural number :(22·n + 1)2

+22 is composite}. Set n = 28 · 1 + 1. (22·n + 1)2 + 22 is composite. X is
natural-membered. For every a such that a ∈ X there exists b such that
b > a and b ∈ X. �
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