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Summary. In this article, we formalize in Mizar [I], [2] the topological
properties of finite-dimensional real normed spaces. In the first section, we for-
malize the Bolzano-Weierstrass theorem, which states that a bounded sequence
of points in an n-dimensional Euclidean space has a certain subsequence that
converges to a point. As a corollary, it is also shown the equivalence between a
subset of an n-dimensional Euclidean space being compact and being closed and
bounded.

In the next section, we formalize the definitions of Ll-norm (Manhattan
Norm) and maximum norm and show their topological equivalence in n-dimensio-
nal Euclidean spaces and finite-dimensional real linear spaces. In the last section,
we formalize the linear isometries and their topological properties. Namely, it is
shown that a linear isometry between real normed spaces preserves properties
such as continuity, the convergence of a sequence, openness, closeness, and com-
pactness of subsets. Finally, it is shown that finite-dimensional real normed spaces
are proper metric spaces. We referred to [5], [9], and [7] in the formalization.
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1. BOLZANO-WEIERSTRASS THEOREM AND ITS COROLLARY

From now on X denotes a set, n, m, k denote natural numbers, K denotes
a field, f denotes an n-element, real-valued finite sequence, and M denotes
a matrix over Rp of dimension nxm. Now we state the propositions:

(1) Let us consider an element z of R"*!, and an element y of R". If y = z|n,
then |y| < |z|.

(2) Let us consider an element z of R"*!, and an element w of R. If w =
xz(n+ 1), then |w| < |z|.

(3) Let us consider an element x of R"*!, an element y of R", and an element
w of R. If y = z[n and w = z(n + 1), then |z| < |y| + |w|.

(4) Let us consider elements x, y of R"™, and a natural number m. If m < n,
then (z —y)[m = z[m — yIm.

(5) Let us consider a natural number n, and a sequence z of (£",| - ||).
Suppose there exists a real number K such that for every natural number
i, ||z(i)|| < K. Then there exists a subsequence zg of x such that xg is
convergent.
PROOF: Define P[natural number] = for every sequence x of (%1, - ||)
such that there exists a real number K such that for every natural number
i, ||x(i)|| < K there exists a subsequence x of  such that xg is convergent.
P[0] by [4, (18)]. For every natural number n such that P[n] holds P[n+1].
For every natural number n, Pln|. O

(6) Let us consider a real normed space N, and a subset X of N. Suppose
X is compact. Then

(i) X is closed, and

(ii) there exists a real number r such that for every point y of N such
that y € X holds ||y|| <.

(7) Let us consider a subset X of (€™, | - |[). Then X is compact if and only
if X is closed and there exists a real number r such that for every point y
of (€™, - ||) such that y € X holds |y|| < r.

2. L1-NORM AND MAXIMUM NORM

Now we state the propositions:

(8) Let us consider a non empty natural number n, and an element x of R".
Then there exists a real number x4 such that

(i) x4 € rnglz|, and

(ii) for every natural number i such that i € dom z holds |z|(7) < z4.
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PROOF: Set F' = rng|x|. Set x4 = sup F. For every natural number 7 such
that i € domz holds |z|(7) < z4. O
(9) Let us consider a real-valued finite sequence z. Then 0 < Y |x|.
Let n be a natural number. Assume n is not empty. The functor max-norm(n)
yielding a function from R" into R is defined by
(Def. 1) for every element = of R", it(x) € rng|x| and for every natural number
i such that ¢ € domx holds |z|(i) < it(x).
Assume n is not empty. The functor sum-norm(n) yielding a function from
R™ into R is defined by
(Def. 2) for every element x of R", it(z) = Y|z
Now we state the proposition:

(10) Let us consider an element x of R", and a real number z4. Suppose
x4 € rnglz| and for every natural number ¢ such that ¢ € domz holds
|z| (i) < x4. Then

(i) Y|z < n- x4, and
(ii) 24 < lz| < Xzl

PROOF: Set F' = n — x4. For every natural number j such that j € Segn
holds |z|(j) < F(j). Consider i being an object such that i € dom|z|
and 24 = |z|(7). Define P[natural number] = for every element z of R%!,
|z|2 < (3°|z|)2. For every natural number n such that P[n] holds P[n+1].
For every natural number n, Pln|. O

Let us consider a non empty natural number n, elements x, y of R", and

a real number a. Now we state the propositions:
(11) (i) 0 < (max-norm(n))(z), and

(ii) (max-norm(n))(x)=0iff z =(0,...,0), and
——

(iii) (max-norm(n))(a-x) = |a| - (max-norm(n))(z), and
(iv) (max-norm(n))(z + y) < (max-norm(n))(z) + (max-norm(n))(y).
PROOF: Set x4 = (max-norm(n))(x). Set yo = (max-norm(n))(y). Consi-
der jo being an object such that jo € dom|z| and x4 = |z|(jo). Consider kg
being an object such that ky € dom|y| and y2 = |y|(ko). (max-norm(n))(z)
= 0 iff 2 = (0,...,0). (max-norm(n))(a - z) = |a| - (max-norm(n))(z).

——

(max- norm(n))(xn—l— y) < (max-norm(n))(z) + (max-norm(n))(y). O
(12) (i) 0 < (sum-norm(n))(z), and
(ii) (sum-norm(n))(z) =0 iff z = (0,...,0), and
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(iii) (sum-norm(n))(a-z) = |a| - (sum-norm(n))(x), and

(iv) (sum-norm(n))(z +y) < (sum-norm(n))(z) + (sum-norm(n))(y).
PrOOF: 0 < Y |z|. (sum-norm(n))(z) = 0 iff z = (0,...,0). For every

natural number j such that j € Segn holds |z + y|(j) < (|| + |y|) (). O

(13) Let us consider a non empty natural number n, and an element z of R™.
Then
(i) (sum-norm(n))(z) < n - (max-norm(n))(z), and
(ii) (max-norm(n))(z) < |z| < (sum-norm(n))(x).
The theorem is a consequence of (10).
(14) The RLS structure of (E™, || - ||) = R%egn.

(15) Let us consider a real number a, elements z, y of (€™, |- ||), and elements

T, Yo of Rseg" Suppose = = x¢ and y = 9. Then
(i) the carrier of (€™, || - ||) = the carrier of Rseg" and
(i) Oen .y = ORSegn, and
(iii) 4+ y = zo + yo, and
)
) -

(iv) a-x =a- xp, and
(v
(Vl)x—y:xo—yo.

The theorem is a consequence of (14).

= —xp, and

Let X be a finite dimensional real linear space.

One can check that RLSp2RVSp(X) is finite dimensional.

Now we state the proposition:

(16) Let us consider a finite dimensional real linear space X, an ordered basis
b of RLSp2RVSp(X), and an element y of RLSp2RVSp(X). Then y — b
is an element of RIMX),

Let X be a finite dimensional real linear space and b be an ordered basis of
RLSp2RVSp(X). The functor max-norm(X, b) yielding a function from X into
R is defined by

(Def. 3) for every element = of X, there exists an element y of RLSp2RVSp(X)
and there exists an element z of RI™X) guch that z =y and z =y — b
and it(z) = (max-norm(dim(X)))(z).

The functor sum-norm(X, b) yielding a function from X into R is defined by

(Def. 4) for every element = of X, there exists an element y of RLSp2RVSp(X)
and there exists an element z of R¥™X) guch that z =y and z =y — b
and it(z) = (sum-norm(dim(X)))(2).
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The functor Euclid-norm(X, b) yielding a function from X into R is defined
by
(Def. 5) for every element = of X, there exists an element y of RLSp2RVSp(X)
and there exists an element z of RY™X) such that z =y and z =y — b
and it(z) = |z|.
Now we state the proposition:

(17) Let us consider a natural number n, an element a of R, an element a;
of Ry, elements x, y of R™, and elements x1, y; of (the carrier of Rp)™.
Suppose a = a; and z = x1 and y = y;. Then

(i) a-x =ay-x1, and
(i) z+y=a1+y1.

Let us consider a finite dimensional real linear space X, an ordered basis b
of RLSp2RVSp(X), elements x, y of X, and a real number a. Now we state the
propositions:

(18) Suppose dim(X) # 0. Then
(i) 0 < (max-norm(X,b))(z), and
(ii) (max-norm(X,b))(x) =0 iff z = 0x, and
(iii) (max-norm(X,b))(a-z) = |a| - (max-norm(X,b))(x), and
) (max-norm(X,b))(z+y) < (max-norm(X,b))(z)+ (max-norm(X, b))
()

The theorem is a consequence of (11).
(19) Suppose dim(X) # 0. Then
(i) 0 < (sum-norm(X,b))(x), and
(ii) (sum-norm(X,b))(xz) =0 iff x = 0x, and
(iii) (sum-norm(X,b))(a-x) = |a| - (sum-norm(X, b))(x), and
(iv) (sum-norm(X,b))(z+vy) < (sum-norm(X,b))(x) + (sum-norm(X, b))
(¥)-

The theorem is a consequence of (12).
(20) (1) 0 < (Euclid-norm(X, b))(x), and
(Euclid-norm (X, b))(xz) =0 iff z = 0x, and
(Euclid-norm(X,b))(a - z) = |a| - (Euclid-norm(X, b))(x), and
( )
(X

(iv

Euclid-norm(X, b)) (z +vy) < (Euclid-norm(X, b))(x) + (Euclid-norm
,0))()-

(21) Let us consider a finite dimensional real linear space X, an ordered basis
b of RLSp2RVSp(X), and an element x of X. Suppose dim(X) # 0. Then
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(i) (sum-norm(X,d))(z) < (dim(X)) - (max-norm(X,b))(z), and
(ii) (max-norm(X,d))(x) < (Euclid-norm(X,b))(z) < (sum-norm(X, b))
().
The theorem is a consequence of (13).
Let us consider a finite dimensional real linear space V', and an ordered

basis b of RLSp2RVSp(V'). Suppose dim (V') # 0. Then there exists a linear
operator S from V into (£4(V) || .||} such that

(i) S is bijective, and
(ii) for every element x of RLSp2RVSp(V), S(z) =x — b.

The theorem is a consequence of (15).

Let us consider a finite dimensional real normed space V. Suppose dim(V)
# 0. Then there exists a linear operator S from V into (£4m(V) || .|
and there exists a finite dimensional vector space W over Ry and there
exists an ordered basis b of W such that W = RLSp2RVSp(V) and S is
bijective and for every element x of W, S(z) = z — b. The theorem is
a consequence of (15).

Let us consider a real normed space V, a finite dimensional real linear
space W, and an ordered basis b of RLSp2RVSp(WW). Suppose V' is finite
dimensional and dim(V') # 0 and the RLS structure of V' = the RLS
structure of W. Then there exist real numbers ki, ko such that

(i) 0 < k1, and
(ii) 0 < ko, and
(iii) for every point z of V, ||z|| < k1-(max-norm (W, b))(z) and (max-norm
(W, 0))(2) < kg - [|]].

PROOF: Reconsider e = b as a finite sequence of elements of W. Reconsider
e1 = e as a finite sequence of elements of V. Define F(natural number) =
lle1/s, l|(€ R). Consider k being a finite sequence of elements of R such that
lenk = lenb and for every natural number ¢ such that ¢ € dom k holds
k(i) = F(i). Set k1 = _ k. For every natural number i such that i € dom k
holds 0 < k(7). For every point x of V, ||z|| < (k1+1)-(max-norm(W, b)) (x)
by [6, (12), (15)], 8, (7)].

Consider Sy being a linear operator from W into (£ such
that Sp is bijective and for every element x of RLSp2RVSp(W), Sp(z) =
x — b. Reconsider S = Sj as a function from the carrier of V into the car-
rier of (£4™W) ||.||). For every elements z, y of V., S(z+y) = S(z)+S(y).
For every real number a and for every vector x of V., S(a-x) = a- S(z).

dmn), ||
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Consider T being a linear operator from (£4™W) |||} into V such that
T = S~! and T is one-to-one and onto. For every element x of V, ||z| <
(k1 +1)-||S(x)]||. For every element y of (£5W) || ), |1 T(y)|| < (k1 +1)-
llyll. Set C2 = {y, where y is an element of V' : (max-norm (W, b))(y) = 1}.

Set Cy = {z, where z is an element of (£5™W) |||} : (max-norm(dim
(W)))(z) = 1}. For every object z such that z € C5 holds z € the carrier
of V. For every object z such that z € (7 holds z € the carrier of
(E4mMW) || ||). Consider z5 being a point of (£4™W) || ||} such that z5 #
0gaimw) .- Reconsider 26 = z5 as an element of RAmW)  (max-norm(dim
(W)))(z6) # 0. 0 < (max-norm(dim(W)))(z5). For every object y, y €
T°C iff y € Cy. Reconsider g = max-norm(dim(W)) as a function from
the carrier of (£4™W) |||} into R. Set D = the carrier of (£4™W) || ||).
For every point zq of (€4™W) ||.||) and for every real number r such that
xg € D and 0 < r there exists a real number s such that 0 < s and for
every point x1 of (£4™W) |||} such that ;1 € D and ||z; — || < s holds
9/21 = 9ol <7

For every sequence s; of (1MW) |||} such that rng s; C C and s is
convergent holds lim sy € Cy. There exists a real number r such that for
every point y of (£4™(W) |||} such that y € C; holds |jy|| < = by (13), [3,
(1)]. Reconsider f = idc, as a partial function from V' to V. Consider yo
being an element of V' such that yo € dom|| f|| and infrng|| f|| = || f]l(vo)-
Set ko = || f/y, ||. For every element x of V such that z € C3 holds k2 < [|z||.
ko # 0. For every point z of V', (max-norm(W,b))(z) < é Nz O

(25) Let us consider real normed spaces X, Y. Suppose the RLS structure of
X = the RLS structure of Y and X is finite dimensional and dim(X) # 0.
Then there exist real numbers ki, ko such that

(1) 0 < kq, and
(ii) 0 < ko, and

(iii) for every element x of X and for every element y of Y such that x =y
holds |z|| < k1 - [lyll and [ly]| < k2 - [|z]-

The theorem is a consequence of (24).

(26) Let us consider a real normed space V. Suppose V is finite dimensional
and dim(V') # 0. Then there exist real numbers k;, k2 and there exists
a linear operator S from V into (£4™(") || .||} such that S is bijective and
0 < k1 and 0 < k2 and for every element x of V, ||S(x)| < ki - ||z|| and
lz|| < k2 - [|S(x)]|. The theorem is a consequence of (23), (24), and (21).
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3. LINEAR ISOMETRY AND ITS TOPOLOGICAL PROPERTIES

Let V, W be real normed spaces and L be a linear operator from V into W.
We say that L is isometric-like if and only if
(Def. 6) there exist real numbers kj, k2 such that 0 < k; and 0 < k2 and for
every element x of V, ||L(x)| < k1 - ||z|| and ||z|| < k2 - || L(x)]|.
Now we state the proposition:

(27) Let us consider a finite dimensional real normed space V. Suppose dim (V)
# 0. Then there exists a linear operator L from V into (£4™() |||} such
that L is one-to-one, onto, and isometric-like.

The theorem is a consequence of (26).

Let us consider real normed spaces V, W and a linear operator L from V
into W. Now we state the propositions:

(28) Suppose L is one-to-one, onto, and isometric-like. Then there exists a li-
near operator K from W into V such that

(i) K=L"1 and
(ii) K is one-to-one, onto, and isometric-like.

ProoF: Consider K being a linear operator from W into V such that
K = L~! and K is one-to-one and onto. Consider ki, ks being real numbers
such that 0 < k1 and 0 < k2 and for every element x of V', || L(x)| < ki-||z]]
and ||z|| < k2 - ||L(z)]|. For every element y of W, ||K(y)| < k2 - ||y|| and
Iyl < ki - K@) O

(29) If L is one-to-one, onto, and isometric-like, then L is Lipschitzian.

(30) If L is one-to-one, onto, and isometric-like, then L is continuous on
the carrier of V.

(31) Let us consider real normed spaces S, T, a linear operator I from S into
T, and a point x of S. If I is one-to-one, onto, and isometric-like, then 1
is continuous in x.
The theorem is a consequence of (29).

(32) Let us consider real normed spaces S, T, a linear operator I from S into
T, and a subset Z of S. If I is one-to-one, onto, and isometric-like, then I
is continuous on Z.
The theorem is a consequence of (31).

Let us consider real normed spaces S, T, a linear operator I from .S into T,
and a sequence s1 of S. Now we state the propositions:

(33) Suppose I is one-to-one, onto, and isometric-like and s; is convergent.
Then
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(i) I- sy is convergent, and
(ii)) im 1 - s; = I(lim sq).

The theorem is a consequence of (31).

(34) If I is one-to-one, onto, and isometric-like, then s; is convergent iff I - s;

is convergent. The theorem is a consequence of (28) and (33).

Let us consider real normed spaces S, T, a linear operator I from .S into T,

and a subset Z of S. Now we state the propositions:

(35) If I is one-to-one, onto, and isometric-like, then Z is closed iff I°Z is

closed.

ProOOF: Consider J being a linear operator from 7" into S such that J =
I=' and J is one-to-one, onto, and isometric-like. Z is closed iff I°Z is
closed. [

(36) If I is one-to-one, onto, and isometric-like, then Z is open iff I°Z is open.

The theorem is a consequence of (28) and (35).

(37) If I is one-to-one, onto, and isometric-like, then Z is compact iff 1°Z is

compact.

ProoOF: Consider J being a linear operator from 7" into S such that J =
I=! and J is one-to-one, onto, and isometric-like. If I°Z is compact, then
Z is compact. [

(38) Let us consider a finite dimensional real normed space V', and a subset

(1]

X of V. Suppose dim(V') # 0. Then X is compact if and only if X is
closed and there exists a real number r such that for every point y of V'

such that y € X holds ||y|| < r. The theorem is a consequence of (6), (27),
(35), and (37).
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