
FORMALIZED MATHEMATICS

Vol. 29, No. 4, Pages 175–184, 2021
DOI: 10.2478/forma-2021-0017 https://sciendo.com/journal/forma

Finite Dimensional Real Normed Spaces are
Proper Metric Spaces1

Kazuhisa Nakasho
Yamaguchi University
Yamaguchi, Japan

Hiroyuki Okazaki
Shinshu University
Nagano, Japan

Yasunari Shidama
Karuizawa Hotch 244-1
Nagano, Japan

Summary. In this article, we formalize in Mizar [1], [2] the topological
properties of finite-dimensional real normed spaces. In the first section, we for-
malize the Bolzano-Weierstrass theorem, which states that a bounded sequence
of points in an n-dimensional Euclidean space has a certain subsequence that
converges to a point. As a corollary, it is also shown the equivalence between a
subset of an n-dimensional Euclidean space being compact and being closed and
bounded.

In the next section, we formalize the definitions of L1-norm (Manhattan
Norm) and maximum norm and show their topological equivalence in n-dimensio-
nal Euclidean spaces and finite-dimensional real linear spaces. In the last section,
we formalize the linear isometries and their topological properties. Namely, it is
shown that a linear isometry between real normed spaces preserves properties
such as continuity, the convergence of a sequence, openness, closeness, and com-
pactness of subsets. Finally, it is shown that finite-dimensional real normed spaces
are proper metric spaces. We referred to [5], [9], and [7] in the formalization.
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1. Bolzano-Weierstrass Theorem and its Corollary

From now on X denotes a set, n, m, k denote natural numbers, K denotes
a field, f denotes an n-element, real-valued finite sequence, and M denotes
a matrix over RF of dimension n×m. Now we state the propositions:

(1) Let us consider an element x ofRn+1, and an element y ofRn. If y = x�n,
then |y| ¬ |x|.

(2) Let us consider an element x of Rn+1, and an element w of R. If w =
x(n+ 1), then |w| ¬ |x|.

(3) Let us consider an element x ofRn+1, an element y ofRn, and an element
w of R. If y = x�n and w = x(n+ 1), then |x| ¬ |y|+ |w|.

(4) Let us consider elements x, y of Rn, and a natural number m. If m ¬ n,
then (x− y)�m = x�m− y�m.

(5) Let us consider a natural number n, and a sequence x of 〈En, ‖ · ‖〉.
Suppose there exists a real number K such that for every natural number
i, ‖x(i)‖ < K. Then there exists a subsequence x0 of x such that x0 is
convergent.
Proof: Define P[natural number] ≡ for every sequence x of 〈E$1 , ‖ · ‖〉
such that there exists a real number K such that for every natural number
i, ‖x(i)‖ < K there exists a subsequence x0 of x such that x0 is convergent.
P[0] by [4, (18)]. For every natural number n such that P[n] holds P[n+1].
For every natural number n, P[n]. �

(6) Let us consider a real normed space N , and a subset X of N . Suppose
X is compact. Then

(i) X is closed, and

(ii) there exists a real number r such that for every point y of N such
that y ∈ X holds ‖y‖ < r.

(7) Let us consider a subset X of 〈En, ‖ · ‖〉. Then X is compact if and only
if X is closed and there exists a real number r such that for every point y
of 〈En, ‖ · ‖〉 such that y ∈ X holds ‖y‖ < r.

2. L1-norm and Maximum Norm

Now we state the propositions:

(8) Let us consider a non empty natural number n, and an element x of Rn.
Then there exists a real number x4 such that

(i) x4 ∈ rng|x|, and

(ii) for every natural number i such that i ∈ domx holds |x|(i) ¬ x4.
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Proof: Set F = rng|x|. Set x4 = supF . For every natural number i such
that i ∈ domx holds |x|(i) ¬ x4. �

(9) Let us consider a real-valued finite sequence x. Then 0 ¬
∑
|x|.

Let n be a natural number. Assume n is not empty. The functor max-norm(n)
yielding a function from Rn into R is defined by

(Def. 1) for every element x of Rn, it(x) ∈ rng|x| and for every natural number
i such that i ∈ domx holds |x|(i) ¬ it(x).

Assume n is not empty. The functor sum-norm(n) yielding a function from
Rn into R is defined by

(Def. 2) for every element x of Rn, it(x) =
∑
|x|.

Now we state the proposition:

(10) Let us consider an element x of Rn, and a real number x4. Suppose
x4 ∈ rng|x| and for every natural number i such that i ∈ domx holds
|x|(i) ¬ x4. Then

(i)
∑
|x| ¬ n · x4, and

(ii) x4 ¬ |x| ¬
∑
|x|.

Proof: Set F = n 7→ x4. For every natural number j such that j ∈ Seg n
holds |x|(j) ¬ F (j). Consider i being an object such that i ∈ dom|x|
and x4 = |x|(i). Define P[natural number] ≡ for every element x of R$1 ,
|x|2 ¬ (

∑
|x|)2. For every natural number n such that P[n] holds P[n+1].

For every natural number n, P[n]. �

Let us consider a non empty natural number n, elements x, y of Rn, and
a real number a. Now we state the propositions:

(11) (i) 0 ¬ (max-norm(n))(x), and

(ii) (max-norm(n))(x) = 0 iff x = 〈0, . . . , 0︸ ︷︷ ︸
n

〉, and

(iii) (max-norm(n))(a · x) = |a| · (max-norm(n))(x), and

(iv) (max-norm(n))(x+ y) ¬ (max-norm(n))(x) + (max-norm(n))(y).
Proof: Set x4 = (max-norm(n))(x). Set y2 = (max-norm(n))(y). Consi-
der j0 being an object such that j0 ∈ dom|x| and x4 = |x|(j0). Consider k0
being an object such that k0 ∈ dom|y| and y2 = |y|(k0). (max-norm(n))(x)
= 0 iff x = 〈0, . . . , 0︸ ︷︷ ︸

n

〉. (max-norm(n))(a · x) = |a| · (max-norm(n))(x).

(max- norm(n))(x+ y) ¬ (max-norm(n))(x) + (max-norm(n))(y). �

(12) (i) 0 ¬ (sum-norm(n))(x), and

(ii) (sum-norm(n))(x) = 0 iff x = 〈0, . . . , 0︸ ︷︷ ︸
n

〉, and
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(iii) (sum-norm(n))(a · x) = |a| · (sum-norm(n))(x), and

(iv) (sum-norm(n))(x+ y) ¬ (sum-norm(n))(x) + (sum-norm(n))(y).
Proof: 0 ¬

∑
|x|. (sum-norm(n))(x) = 0 iff x = 〈0, . . . , 0︸ ︷︷ ︸

n

〉. For every

natural number j such that j ∈ Seg n holds |x+ y|(j) ¬ (|x|+ |y|)(j). �

(13) Let us consider a non empty natural number n, and an element x of Rn.
Then

(i) (sum-norm(n))(x) ¬ n · (max-norm(n))(x), and

(ii) (max-norm(n))(x) ¬ |x| ¬ (sum-norm(n))(x).

The theorem is a consequence of (10).

(14) The RLS structure of 〈En, ‖ · ‖〉 = RSegnR .

(15) Let us consider a real number a, elements x, y of 〈En, ‖·‖〉, and elements
x0, y0 of RSegnR . Suppose x = x0 and y = y0. Then

(i) the carrier of 〈En, ‖ · ‖〉 = the carrier of RSegnR , and

(ii) 0〈En,‖·‖〉 = 0RSegnR
, and

(iii) x+ y = x0 + y0, and

(iv) a · x = a · x0, and

(v) −x = −x0, and

(vi) x− y = x0 − y0.
The theorem is a consequence of (14).

Let X be a finite dimensional real linear space.
One can check that RLSp2RVSp(X) is finite dimensional.
Now we state the proposition:

(16) Let us consider a finite dimensional real linear space X, an ordered basis
b of RLSp2RVSp(X), and an element y of RLSp2RVSp(X). Then y → b
is an element of Rdim(X).

Let X be a finite dimensional real linear space and b be an ordered basis of
RLSp2RVSp(X). The functor max-norm(X, b) yielding a function from X into
R is defined by

(Def. 3) for every element x of X, there exists an element y of RLSp2RVSp(X)
and there exists an element z of Rdim(X) such that x = y and z = y → b
and it(x) = (max-norm(dim(X)))(z).

The functor sum-norm(X, b) yielding a function from X into R is defined by

(Def. 4) for every element x of X, there exists an element y of RLSp2RVSp(X)
and there exists an element z of Rdim(X) such that x = y and z = y → b
and it(x) = (sum-norm(dim(X)))(z).
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The functor Euclid-norm(X, b) yielding a function from X into R is defined
by

(Def. 5) for every element x of X, there exists an element y of RLSp2RVSp(X)
and there exists an element z of Rdim(X) such that x = y and z = y → b
and it(x) = |z|.

Now we state the proposition:

(17) Let us consider a natural number n, an element a of R, an element a1
of RF, elements x, y of Rn, and elements x1, y1 of (the carrier of RF)n.
Suppose a = a1 and x = x1 and y = y1. Then

(i) a · x = a1 · x1, and

(ii) x+ y = x1 + y1.

Let us consider a finite dimensional real linear space X, an ordered basis b
of RLSp2RVSp(X), elements x, y of X, and a real number a. Now we state the
propositions:

(18) Suppose dim(X) 6= 0. Then

(i) 0 ¬ (max-norm(X, b))(x), and

(ii) (max-norm(X, b))(x) = 0 iff x = 0X , and

(iii) (max-norm(X, b))(a · x) = |a| · (max-norm(X, b))(x), and

(iv) (max-norm(X, b))(x+y) ¬ (max-norm(X, b))(x)+(max-norm(X, b))
(y).

The theorem is a consequence of (11).

(19) Suppose dim(X) 6= 0. Then

(i) 0 ¬ (sum-norm(X, b))(x), and

(ii) (sum-norm(X, b))(x) = 0 iff x = 0X , and

(iii) (sum-norm(X, b))(a · x) = |a| · (sum-norm(X, b))(x), and

(iv) (sum-norm(X, b))(x+ y) ¬ (sum-norm(X, b))(x) + (sum-norm(X, b))
(y).

The theorem is a consequence of (12).

(20) (i) 0 ¬ (Euclid-norm(X, b))(x), and

(ii) (Euclid-norm(X, b))(x) = 0 iff x = 0X , and

(iii) (Euclid-norm(X, b))(a · x) = |a| · (Euclid-norm(X, b))(x), and

(iv) (Euclid-norm(X, b))(x+y) ¬ (Euclid-norm(X, b))(x)+(Euclid-norm
(X, b))(y).

(21) Let us consider a finite dimensional real linear space X, an ordered basis
b of RLSp2RVSp(X), and an element x of X. Suppose dim(X) 6= 0. Then
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(i) (sum-norm(X, b))(x) ¬ (dim(X)) · (max-norm(X, b))(x), and

(ii) (max-norm(X, b))(x) ¬ (Euclid-norm(X, b))(x) ¬ (sum-norm(X, b))

(x).

The theorem is a consequence of (13).

(22) Let us consider a finite dimensional real linear space V , and an ordered
basis b of RLSp2RVSp(V ). Suppose dim(V ) 6= 0. Then there exists a linear
operator S from V into 〈Edim(V ), ‖ · ‖〉 such that

(i) S is bijective, and

(ii) for every element x of RLSp2RVSp(V ), S(x) = x→ b.

The theorem is a consequence of (15).

(23) Let us consider a finite dimensional real normed space V . Suppose dim(V )
6= 0. Then there exists a linear operator S from V into 〈Edim(V ), ‖ · ‖〉
and there exists a finite dimensional vector space W over RF and there
exists an ordered basis b of W such that W = RLSp2RVSp(V ) and S is
bijective and for every element x of W , S(x) = x → b. The theorem is
a consequence of (15).

(24) Let us consider a real normed space V , a finite dimensional real linear
space W , and an ordered basis b of RLSp2RVSp(W ). Suppose V is finite
dimensional and dim(V ) 6= 0 and the RLS structure of V = the RLS
structure of W . Then there exist real numbers k1, k2 such that

(i) 0 < k1, and

(ii) 0 < k2, and

(iii) for every point x of V , ‖x‖ ¬ k1·(max-norm(W, b))(x) and (max-norm

(W, b))(x) ¬ k2 · ‖x‖.

Proof: Reconsider e = b as a finite sequence of elements ofW . Reconsider
e1 = e as a finite sequence of elements of V . Define F(natural number) =
‖e1/$1‖(∈ R). Consider k being a finite sequence of elements of R such that
len k = len b and for every natural number i such that i ∈ dom k holds
k(i) = F(i). Set k1 =

∑
k. For every natural number i such that i ∈ dom k

holds 0 ¬ k(i). For every point x of V , ‖x‖ ¬ (k1+1)·(max-norm(W, b))(x)
by [6, (12), (15)], [8, (7)].

Consider S0 being a linear operator from W into 〈Edim(W ), ‖ · ‖〉 such
that S0 is bijective and for every element x of RLSp2RVSp(W ), S0(x) =
x→ b. Reconsider S = S0 as a function from the carrier of V into the car-
rier of 〈Edim(W ), ‖·‖〉. For every elements x, y of V , S(x+y) = S(x)+S(y).
For every real number a and for every vector x of V , S(a · x) = a · S(x).
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Consider T being a linear operator from 〈Edim(W ), ‖·‖〉 into V such that
T = S−1 and T is one-to-one and onto. For every element x of V , ‖x‖ ¬
(k1+1) · ‖S(x)‖. For every element y of 〈Edim(W ), ‖ ·‖〉, ‖T (y)‖ ¬ (k1+1) ·
‖y‖. Set C2 = {y, where y is an element of V : (max-norm(W, b))(y) = 1}.

Set C1 = {x, where x is an element of 〈Edim(W ), ‖ · ‖〉 : (max-norm(dim
(W )))(x) = 1}. For every object z such that z ∈ C2 holds z ∈ the carrier
of V . For every object z such that z ∈ C1 holds z ∈ the carrier of
〈Edim(W ), ‖ · ‖〉. Consider z5 being a point of 〈Edim(W ), ‖ · ‖〉 such that z5 6=
0〈Edim(W ),‖·‖〉. Reconsider z6 = z5 as an element ofRdim(W ). (max-norm(dim
(W )))(z6) 6= 0. 0 < (max-norm(dim(W )))(z5). For every object y, y ∈
T ◦C1 iff y ∈ C2. Reconsider g = max-norm(dim(W )) as a function from
the carrier of 〈Edim(W ), ‖ · ‖〉 into R. Set D = the carrier of 〈Edim(W ), ‖ · ‖〉.
For every point x0 of 〈Edim(W ), ‖ ·‖〉 and for every real number r such that
x0 ∈ D and 0 < r there exists a real number s such that 0 < s and for
every point x1 of 〈Edim(W ), ‖ ·‖〉 such that x1 ∈ D and ‖x1−x0‖ < s holds
|g/x1 − g/x0 | < r.

For every sequence s1 of 〈Edim(W ), ‖ · ‖〉 such that rng s1 ⊆ C1 and s1 is
convergent holds lim s1 ∈ C1. There exists a real number r such that for
every point y of 〈Edim(W ), ‖ · ‖〉 such that y ∈ C1 holds ‖y‖ < r by (13), [3,
(1)]. Reconsider f = idC2 as a partial function from V to V . Consider y0
being an element of V such that y0 ∈ dom‖f‖ and inf rng‖f‖ = ‖f‖(y0).
Set k2 = ‖f/y0‖. For every element x of V such that x ∈ C2 holds k2 ¬ ‖x‖.
k2 6= 0. For every point x of V , (max-norm(W, b))(x) ¬ 1

k2
· ‖x‖. �

(25) Let us consider real normed spaces X, Y. Suppose the RLS structure of
X = the RLS structure of Y and X is finite dimensional and dim(X) 6= 0.
Then there exist real numbers k1, k2 such that

(i) 0 < k1, and

(ii) 0 < k2, and

(iii) for every element x of X and for every element y of Y such that x = y
holds ‖x‖ ¬ k1 · ‖y‖ and ‖y‖ ¬ k2 · ‖x‖.

The theorem is a consequence of (24).

(26) Let us consider a real normed space V . Suppose V is finite dimensional
and dim(V ) 6= 0. Then there exist real numbers k1, k2 and there exists
a linear operator S from V into 〈Edim(V ), ‖ · ‖〉 such that S is bijective and
0 ¬ k1 and 0 ¬ k2 and for every element x of V , ‖S(x)‖ ¬ k1 · ‖x‖ and
‖x‖ ¬ k2 · ‖S(x)‖. The theorem is a consequence of (23), (24), and (21).
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3. Linear Isometry and its Topological Properties

Let V , W be real normed spaces and L be a linear operator from V into W .
We say that L is isometric-like if and only if

(Def. 6) there exist real numbers k1, k2 such that 0 ¬ k1 and 0 ¬ k2 and for
every element x of V , ‖L(x)‖ ¬ k1 · ‖x‖ and ‖x‖ ¬ k2 · ‖L(x)‖.

Now we state the proposition:

(27) Let us consider a finite dimensional real normed space V . Suppose dim(V )
6= 0. Then there exists a linear operator L from V into 〈Edim(V ), ‖ · ‖〉 such
that L is one-to-one, onto, and isometric-like.
The theorem is a consequence of (26).

Let us consider real normed spaces V , W and a linear operator L from V
into W . Now we state the propositions:

(28) Suppose L is one-to-one, onto, and isometric-like. Then there exists a li-
near operator K from W into V such that

(i) K = L−1, and

(ii) K is one-to-one, onto, and isometric-like.

Proof: Consider K being a linear operator from W into V such that
K = L−1 andK is one-to-one and onto. Consider k1, k2 being real numbers
such that 0 ¬ k1 and 0 ¬ k2 and for every element x of V , ‖L(x)‖ ¬ k1 ·‖x‖
and ‖x‖ ¬ k2 · ‖L(x)‖. For every element y of W , ‖K(y)‖ ¬ k2 · ‖y‖ and
‖y‖ ¬ k1 · ‖K(y)‖. �

(29) If L is one-to-one, onto, and isometric-like, then L is Lipschitzian.

(30) If L is one-to-one, onto, and isometric-like, then L is continuous on
the carrier of V .

(31) Let us consider real normed spaces S, T , a linear operator I from S into
T , and a point x of S. If I is one-to-one, onto, and isometric-like, then I
is continuous in x.
The theorem is a consequence of (29).

(32) Let us consider real normed spaces S, T , a linear operator I from S into
T , and a subset Z of S. If I is one-to-one, onto, and isometric-like, then I
is continuous on Z.
The theorem is a consequence of (31).

Let us consider real normed spaces S, T , a linear operator I from S into T ,
and a sequence s1 of S. Now we state the propositions:

(33) Suppose I is one-to-one, onto, and isometric-like and s1 is convergent.
Then
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(i) I · s1 is convergent, and

(ii) lim I · s1 = I(lim s1).

The theorem is a consequence of (31).

(34) If I is one-to-one, onto, and isometric-like, then s1 is convergent iff I · s1
is convergent. The theorem is a consequence of (28) and (33).

Let us consider real normed spaces S, T , a linear operator I from S into T ,
and a subset Z of S. Now we state the propositions:

(35) If I is one-to-one, onto, and isometric-like, then Z is closed iff I◦Z is
closed.
Proof: Consider J being a linear operator from T into S such that J =
I−1 and J is one-to-one, onto, and isometric-like. Z is closed iff I◦Z is
closed. �

(36) If I is one-to-one, onto, and isometric-like, then Z is open iff I◦Z is open.
The theorem is a consequence of (28) and (35).

(37) If I is one-to-one, onto, and isometric-like, then Z is compact iff I◦Z is
compact.
Proof: Consider J being a linear operator from T into S such that J =
I−1 and J is one-to-one, onto, and isometric-like. If I◦Z is compact, then
Z is compact. �

(38) Let us consider a finite dimensional real normed space V , and a subset
X of V . Suppose dim(V ) 6= 0. Then X is compact if and only if X is
closed and there exists a real number r such that for every point y of V
such that y ∈ X holds ‖y‖ < r. The theorem is a consequence of (6), (27),
(35), and (37).
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