Finite Dimensional Real Normed Spaces are Proper Metric Spaces ${ }^{11}$

Kazuhisa Nakasho
Yamaguchi University
Yamaguchi, Japan

Hiroyuki Okazaki
Shinshu University
Nagano, Japan

Yasunari Shidama
Karuizawa Hotch 244-1
Nagano, Japan

Abstract

Summary. In this article, we formalize in Mizar [1, [2] the topological properties of finite-dimensional real normed spaces. In the first section, we formalize the Bolzano-Weierstrass theorem, which states that a bounded sequence of points in an n-dimensional Euclidean space has a certain subsequence that converges to a point. As a corollary, it is also shown the equivalence between a subset of an n-dimensional Euclidean space being compact and being closed and bounded.

In the next section, we formalize the definitions of L1-norm (Manhattan Norm) and maximum norm and show their topological equivalence in n-dimensional Euclidean spaces and finite-dimensional real linear spaces. In the last section, we formalize the linear isometries and their topological properties. Namely, it is shown that a linear isometry between real normed spaces preserves properties such as continuity, the convergence of a sequence, openness, closeness, and compactness of subsets. Finally, it is shown that finite-dimensional real normed spaces are proper metric spaces. We referred to [5, 9], and [7] in the formalization.

MSC: 15A04 40A05 46A50 68V20
Keywords: real vector space; topological space; normed spaces; L1-norm; maximum norm; linear isometry; proper metric space

MML identifier: REAL_NS3, version: 8.1.11 5.68.1412

[^0]
1. Bolzano-Weierstrass Theorem and its Corollary

From now on X denotes a set, n, m, k denote natural numbers, K denotes a field, f denotes an n-element, real-valued finite sequence, and M denotes a matrix over \mathbb{R}_{F} of dimension $n \times m$. Now we state the propositions:
(1) Let us consider an element x of \mathcal{R}^{n+1}, and an element y of \mathcal{R}^{n}. If $y=x \upharpoonright n$, then $|y| \leqslant|x|$.
(2) Let us consider an element x of \mathcal{R}^{n+1}, and an element w of \mathbb{R}. If $w=$ $x(n+1)$, then $|w| \leqslant|x|$.
(3) Let us consider an element x of \mathcal{R}^{n+1}, an element y of \mathcal{R}^{n}, and an element w of \mathbb{R}. If $y=x \upharpoonright n$ and $w=x(n+1)$, then $|x| \leqslant|y|+|w|$.
(4) Let us consider elements x, y of \mathcal{R}^{n}, and a natural number m. If $m \leqslant n$, then $(x-y) \upharpoonright m=x \upharpoonright m-y \upharpoonright m$.
(5) Let us consider a natural number n, and a sequence x of $\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle$. Suppose there exists a real number K such that for every natural number $i,\|x(i)\|<K$. Then there exists a subsequence x_{0} of x such that x_{0} is convergent.
Proof: Define \mathcal{P} [natural number] \equiv for every sequence x of $\left\langle\mathcal{E}^{\$_{1}},\|\cdot\|\right\rangle$ such that there exists a real number K such that for every natural number $i,\|x(i)\|<K$ there exists a subsequence x_{0} of x such that x_{0} is convergent. $\mathcal{P}[0]$ by [4, (18)]. For every natural number n such that $\mathcal{P}[n]$ holds $\mathcal{P}[n+1]$. For every natural number $n, \mathcal{P}[n]$.
(6) Let us consider a real normed space N, and a subset X of N. Suppose X is compact. Then
(i) X is closed, and
(ii) there exists a real number r such that for every point y of N such that $y \in X$ holds $\|y\|<r$.
(7) Let us consider a subset X of $\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle$. Then X is compact if and only if X is closed and there exists a real number r such that for every point y of $\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle$ such that $y \in X$ holds $\|y\|<r$.

2. L1-NORM and Maximum Norm

Now we state the propositions:
(8) Let us consider a non empty natural number n, and an element x of \mathcal{R}^{n}. Then there exists a real number x_{4} such that
(i) $x_{4} \in \operatorname{rng}|x|$, and
(ii) for every natural number i such that $i \in \operatorname{dom} x$ holds $|x|(i) \leqslant x_{4}$.

Proof: Set $F=\operatorname{rng}|x|$. Set $x_{4}=\sup F$. For every natural number i such that $i \in \operatorname{dom} x$ holds $|x|(i) \leqslant x_{4}$.
(9) Let us consider a real-valued finite sequence x. Then $0 \leqslant \sum|x|$.

Let n be a natural number. Assume n is not empty. The functor max-norm (n) yielding a function from \mathcal{R}^{n} into \mathbb{R} is defined by
(Def. 1) for every element x of $\mathcal{R}^{n}, i t(x) \in \operatorname{rng}|x|$ and for every natural number i such that $i \in \operatorname{dom} x$ holds $|x|(i) \leqslant i t(x)$.
Assume n is not empty. The functor sum-norm (n) yielding a function from \mathcal{R}^{n} into \mathbb{R} is defined by
(Def. 2) for every element x of $\mathcal{R}^{n}, i t(x)=\sum|x|$.
Now we state the proposition:
(10) Let us consider an element x of \mathcal{R}^{n}, and a real number x_{4}. Suppose $x_{4} \in \operatorname{rng}|x|$ and for every natural number i such that $i \in \operatorname{dom} x$ holds $|x|(i) \leqslant x_{4}$. Then
(i) $\sum|x| \leqslant n \cdot x_{4}$, and
(ii) $x_{4} \leqslant|x| \leqslant \sum|x|$.

Proof: Set $F=n \mapsto x_{4}$. For every natural number j such that $j \in \operatorname{Seg} n$ holds $|x|(j) \leqslant F(j)$. Consider i being an object such that $i \in \operatorname{dom}|x|$ and $x_{4}=|x|(i)$. Define \mathcal{P} [natural number] \equiv for every element x of $\mathcal{R}^{\$_{1}}$, $|x|^{2} \leqslant\left(\sum|x|\right)^{2}$. For every natural number n such that $\mathcal{P}[n]$ holds $\mathcal{P}[n+1]$. For every natural number $n, \mathcal{P}[n]$.
Let us consider a non empty natural number n, elements x, y of \mathcal{R}^{n}, and a real number a. Now we state the propositions:
(i) $0 \leqslant(\max -\operatorname{norm}(n))(x)$, and
(ii) $(\max -\operatorname{norm}(n))(x)=0$ iff $x=\langle\underbrace{0, \ldots, 0}_{n}\rangle$, and
(iii) $($ max- $\operatorname{norm}(n))(a \cdot x)=|a| \cdot(\max -\operatorname{norm}(n))(x)$, and
(iv) $(\max -\operatorname{norm}(n))(x+y) \leqslant($ max-norm $(n))(x)+(\max -\operatorname{norm}(n))(y)$.

Proof: Set $x_{4}=(\max -\operatorname{norm}(n))(x)$. Set $y_{2}=(\max -\operatorname{norm}(n))(y)$. Consider j_{0} being an object such that $j_{0} \in \operatorname{dom}|x|$ and $x_{4}=|x|\left(j_{0}\right)$. Consider k_{0} being an object such that $k_{0} \in \operatorname{dom}|y|$ and $y_{2}=|y|\left(k_{0}\right) .(\max -\operatorname{norm}(n))(x)$
$=0$ iff $x=\langle\underbrace{0, \ldots, 0}_{n}\rangle .(\max -\operatorname{norm}(n))(a \cdot x)=|a| \cdot(\max -\operatorname{norm}(n))(x)$.
$(\max -\operatorname{norm}(n))(x+y) \leqslant($ max-norm $(n))(x)+(\max -\operatorname{norm}(n))(y)$.
(i) $0 \leqslant(\operatorname{sum}-\operatorname{norm}(n))(x)$, and
(ii) $($ sum-norm $(n))(x)=0$ iff $x=\langle\underbrace{0, \ldots, 0}_{n}\rangle$, and
(iii) (sum-norm $(n))(a \cdot x)=|a| \cdot(\operatorname{sum}-\operatorname{norm}(n))(x)$, and
(iv) $(\operatorname{sum}-\operatorname{norm}(n))(x+y) \leqslant(\operatorname{sum}-\operatorname{norm}(n))(x)+(\operatorname{sum}-\operatorname{norm}(n))(y)$.

Proof: $0 \leqslant \sum|x|$. (sum-norm $\left.(n)\right)(x)=0$ iff $x=\langle\underbrace{0, \ldots, 0}_{n}\rangle$. For every natural number j such that $j \in \operatorname{Seg} n$ holds $|x+y|(j) \leqslant(|x|+|y|)(j)$.
(13) Let us consider a non empty natural number n, and an element x of \mathcal{R}^{n}. Then
(i) $(\operatorname{sum}-\operatorname{norm}(n))(x) \leqslant n \cdot(\max -\operatorname{norm}(n))(x)$, and
(ii) $(\max -\operatorname{norm}(n))(x) \leqslant|x| \leqslant(\operatorname{sum}-\operatorname{norm}(n))(x)$.

The theorem is a consequence of (10).
(14) The RLS structure of $\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle=\mathbb{R}_{\mathbb{R}}^{\mathrm{Seg} n}$.
(15) Let us consider a real number a, elements x, y of $\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle$, and elements x_{0}, y_{0} of $\mathbb{R}_{\mathbb{R}}^{\operatorname{Seg} n}$. Suppose $x=x_{0}$ and $y=y_{0}$. Then
(i) the carrier of $\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle=$ the carrier of $\mathbb{R}_{\mathbb{R}}^{\operatorname{Seg} n}$, and
(ii) $0_{\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle}=0_{\mathbb{R}_{\mathbb{R}}^{\operatorname{Seg} n}}$, and
(iii) $x+y=x_{0}+y_{0}$, and
(iv) $a \cdot x=a \cdot x_{0}$, and
(v) $-x=-x_{0}$, and
(vi) $x-y=x_{0}-y_{0}$.

The theorem is a consequence of (14).
Let X be a finite dimensional real linear space.
One can check that $\operatorname{RLSp} 2 \operatorname{RVSp}(X)$ is finite dimensional.
Now we state the proposition:
(16) Let us consider a finite dimensional real linear space X, an ordered basis b of RLSp2RVSp(X), and an element y of $\operatorname{RLSp2RVSp}(X)$. Then $y \rightarrow b$ is an element of $\mathcal{R}^{\operatorname{dim}(X)}$.
Let X be a finite dimensional real linear space and b be an ordered basis of RLSp2RVSp (X). The functor max-norm (X, b) yielding a function from X into \mathbb{R} is defined by
(Def. 3) for every element x of X, there exists an element y of $\operatorname{RLSp} 2 \operatorname{RVSp}(X)$ and there exists an element z of $\mathcal{R}^{\operatorname{dim}(X)}$ such that $x=y$ and $z=y \rightarrow b$ and $i t(x)=($ max-norm $(\operatorname{dim}(X)))(z)$.
The functor sum-norm (X, b) yielding a function from X into \mathbb{R} is defined by
(Def. 4) for every element x of X, there exists an element y of $\operatorname{RLSp} 2 \operatorname{RVSp}(X)$ and there exists an element z of $\mathcal{R}^{\operatorname{dim}(X)}$ such that $x=y$ and $z=y \rightarrow b$ and $i t(x)=(\operatorname{sum}-\operatorname{norm}(\operatorname{dim}(X)))(z)$.

The functor Euclid-norm (X, b) yielding a function from X into \mathbb{R} is defined by
(Def. 5) for every element x of X, there exists an element y of $\operatorname{RLSp} 2 \operatorname{RVSp}(X)$ and there exists an element z of $\mathcal{R}^{\operatorname{dim}(X)}$ such that $x=y$ and $z=y \rightarrow b$ and $i t(x)=|z|$.
Now we state the proposition:
(17) Let us consider a natural number n, an element a of \mathbb{R}, an element a_{1} of \mathbb{R}_{F}, elements x, y of \mathcal{R}^{n}, and elements x_{1}, y_{1} of (the carrier of $\left.\mathbb{R}_{\mathrm{F}}\right)^{n}$. Suppose $a=a_{1}$ and $x=x_{1}$ and $y=y_{1}$. Then
(i) $a \cdot x=a_{1} \cdot x_{1}$, and
(ii) $x+y=x_{1}+y_{1}$.

Let us consider a finite dimensional real linear space X, an ordered basis b of $\operatorname{RLSp} 2 \operatorname{RVSp}(X)$, elements x, y of X, and a real number a. Now we state the propositions:
(18) Suppose $\operatorname{dim}(X) \neq 0$. Then
(i) $0 \leqslant(\max -\operatorname{norm}(X, b))(x)$, and
(ii) $(\max -\operatorname{norm}(X, b))(x)=0$ iff $x=0_{X}$, and
(iii) $($ max-norm $(X, b))(a \cdot x)=|a| \cdot($ max-norm $(X, b))(x)$, and
(iv) $(\max -\operatorname{norm}(X, b))(x+y) \leqslant(\max -\operatorname{norm}(X, b))(x)+(\max -\operatorname{norm}(X, b))$ (y).

The theorem is a consequence of (11).
(19) Suppose $\operatorname{dim}(X) \neq 0$. Then
(i) $0 \leqslant(\operatorname{sum}-\operatorname{norm}(X, b))(x)$, and
(ii) $(\operatorname{sum}-\operatorname{norm}(X, b))(x)=0$ iff $x=0_{X}$, and
(iii) $(\operatorname{sum}-\operatorname{norm}(X, b))(a \cdot x)=|a| \cdot(\operatorname{sum}-\operatorname{norm}(X, b))(x)$, and
(iv) $(\operatorname{sum}-\operatorname{norm}(X, b))(x+y) \leqslant(\operatorname{sum}-\operatorname{norm}(X, b))(x)+(\operatorname{sum}-\operatorname{norm}(X, b))$ (y).

The theorem is a consequence of (12).
(20) (i) $0 \leqslant(\operatorname{Euclid}-\operatorname{norm}(X, b))(x)$, and
(ii) (Euclid-norm $(X, b))(x)=0$ iff $x=0_{X}$, and
(iii) (Euclid-norm $(X, b))(a \cdot x)=|a| \cdot(\operatorname{Euclid}-n o r m(X, b))(x)$, and
(iv) $($ Euclid-norm $(X, b))(x+y) \leqslant(\operatorname{Euclid}-n o r m(X, b))(x)+$ (Euclid-norm $(X, b))(y)$.
(21) Let us consider a finite dimensional real linear space X, an ordered basis b of RLSp2RVSp (X), and an element x of X. Suppose $\operatorname{dim}(X) \neq 0$. Then
(i) $(\operatorname{sum}-\operatorname{norm}(X, b))(x) \leqslant(\operatorname{dim}(X)) \cdot($ max-norm $(X, b))(x)$, and
(ii) $(\max -\operatorname{norm}(X, b))(x) \leqslant(\operatorname{Euclid}-\operatorname{norm}(X, b))(x) \leqslant(\operatorname{sum}-\operatorname{norm}(X, b))$ (x).

The theorem is a consequence of (13).
(22) Let us consider a finite dimensional real linear space V, and an ordered basis b of RLSp2RVSp (V). Suppose $\operatorname{dim}(V) \neq 0$. Then there exists a linear operator S from V into $\left\langle\mathcal{E}^{\operatorname{dim}(V)},\|\cdot\|\right\rangle$ such that
(i) S is bijective, and
(ii) for every element x of $\operatorname{RLSp} 2 \operatorname{RVSp}(V), S(x)=x \rightarrow b$.

The theorem is a consequence of (15).
(23) Let us consider a finite dimensional real normed space V. Suppose $\operatorname{dim}(V)$ $\neq 0$. Then there exists a linear operator S from V into $\left\langle\mathcal{E}^{\operatorname{dim}(V)},\|\cdot\|\right\rangle$ and there exists a finite dimensional vector space W over \mathbb{R}_{F} and there exists an ordered basis b of W such that $W=\operatorname{RLSp} 2 \operatorname{RVSp}(V)$ and S is bijective and for every element x of $W, S(x)=x \rightarrow b$. The theorem is a consequence of (15).
(24) Let us consider a real normed space V, a finite dimensional real linear space W, and an ordered basis b of RLSp2RVSp (W). Suppose V is finite dimensional and $\operatorname{dim}(V) \neq 0$ and the RLS structure of $V=$ the RLS structure of W. Then there exist real numbers k_{1}, k_{2} such that
(i) $0<k_{1}$, and
(ii) $0<k_{2}$, and
(iii) for every point x of $V,\|x\| \leqslant k_{1} \cdot($ max-norm $(W, b))(x)$ and (max-norm $(W, b))(x) \leqslant k_{2} \cdot\|x\|$.

Proof: Reconsider $e=b$ as a finite sequence of elements of W. Reconsider $e_{1}=e$ as a finite sequence of elements of V. Define \mathcal{F} (natural number) $=$ $\left\|e_{1 / \$_{1}}\right\|(\in \mathbb{R})$. Consider k being a finite sequence of elements of \mathbb{R} such that len $k=\operatorname{len} b$ and for every natural number i such that $i \in \operatorname{dom} k$ holds $k(i)=\mathcal{F}(i)$. Set $k_{1}=\sum k$. For every natural number i such that $i \in \operatorname{dom} k$ holds $0 \leqslant k(i)$. For every point x of $V,\|x\| \leqslant\left(k_{1}+1\right) \cdot(\max -\operatorname{norm}(W, b))(x)$ by [6, (12), (15)], [8, (7)].

Consider S_{0} being a linear operator from W into $\left\langle\mathcal{E}^{\operatorname{dim}(W)},\|\cdot\|\right\rangle$ such that S_{0} is bijective and for every element x of $\operatorname{RLSp} 2 \operatorname{RVSp}(W), S_{0}(x)=$ $x \rightarrow b$. Reconsider $S=S_{0}$ as a function from the carrier of V into the carrier of $\left\langle\mathcal{E}^{\operatorname{dim}(W)},\|\cdot\|\right\rangle$. For every elements x, y of $V, S(x+y)=S(x)+S(y)$. For every real number a and for every vector x of $V, S(a \cdot x)=a \cdot S(x)$.

Consider T being a linear operator from $\left\langle\mathcal{E}^{\operatorname{dim}(W)},\|\cdot\|\right\rangle$ into V such that $T=S^{-1}$ and T is one-to-one and onto. For every element x of $V,\|x\| \leqslant$ $\left(k_{1}+1\right) \cdot\|S(x)\|$. For every element y of $\left\langle\mathcal{E}^{\operatorname{dim}(W)},\|\cdot\|\right\rangle,\|T(y)\| \leqslant\left(k_{1}+1\right)$. $\|y\|$. Set $C_{2}=\{y$, where y is an element of $V:(\max -\operatorname{norm}(W, b))(y)=1\}$.

Set $C_{1}=\left\{x\right.$, where x is an element of $\left\langle\mathcal{E}^{\operatorname{dim}(W)},\|\cdot\|\right\rangle:($ max-norm $(\operatorname{dim}$ $(W)))(x)=1\}$. For every object z such that $z \in C_{2}$ holds $z \in$ the carrier of V. For every object z such that $z \in C_{1}$ holds $z \in$ the carrier of $\left\langle\mathcal{E}^{\operatorname{dim}(W)},\|\cdot\|\right\rangle$. Consider z_{5} being a point of $\left\langle\mathcal{E}^{\operatorname{dim}(W)},\|\cdot\|\right\rangle$ such that $z_{5} \neq$ $0_{\left\langle\mathcal{E}^{\operatorname{dim}(W),\| \| \|\rangle}\right.}$. Reconsider $z_{6}=z_{5}$ as an element of $\mathcal{R}^{\operatorname{dim}(W)}$. (max-norm(dim $(W)))\left(z_{6}\right) \neq 0.0<(\max -\operatorname{norm}(\operatorname{dim}(W)))\left(z_{5}\right)$. For every object $y, y \in$ $T^{\circ} C_{1}$ iff $y \in C_{2}$. Reconsider $g=\max$-norm $(\operatorname{dim}(W))$ as a function from the carrier of $\left\langle\mathcal{E}^{\operatorname{dim}(W)},\|\cdot\|\right\rangle$ into \mathbb{R}. Set $D=$ the carrier of $\left\langle\mathcal{E}^{\operatorname{dim}(W)},\|\cdot\|\right\rangle$. For every point x_{0} of $\left\langle\mathcal{E}^{\operatorname{dim}(W)},\|\cdot\|\right\rangle$ and for every real number r such that $x_{0} \in D$ and $0<r$ there exists a real number s such that $0<s$ and for every point x_{1} of $\left\langle\mathcal{E}^{\operatorname{dim}(W)},\|\cdot\|\right\rangle$ such that $x_{1} \in D$ and $\left\|x_{1}-x_{0}\right\|<s$ holds $\left|g_{/ x_{1}}-g_{/ x_{0}}\right|<r$.

For every sequence s_{1} of $\left\langle\mathcal{E}^{\operatorname{dim}(W)},\|\cdot\|\right\rangle$ such that rng $s_{1} \subseteq C_{1}$ and s_{1} is convergent holds $\lim s_{1} \in C_{1}$. There exists a real number r such that for every point y of $\left\langle\mathcal{E}^{\operatorname{dim}(W)},\|\cdot\|\right\rangle$ such that $y \in C_{1}$ holds $\|y\|<r$ by (13), [3, (1)]. Reconsider $f=\operatorname{id}_{C_{2}}$ as a partial function from V to V. Consider y_{0} being an element of V such that $y_{0} \in \operatorname{dom}\|f\|$ and inf rng $\|f\|=\|f\|\left(y_{0}\right)$. Set $k_{2}=\left\|f_{/ y_{0}}\right\|$. For every element x of V such that $x \in C_{2}$ holds $k_{2} \leqslant\|x\|$. $k_{2} \neq 0$. For every point x of $V,(\max -\operatorname{norm}(W, b))(x) \leqslant \frac{1}{k_{2}} \cdot\|x\|$.
(25) Let us consider real normed spaces X, Y. Suppose the RLS structure of $X=$ the RLS structure of Y and X is finite dimensional and $\operatorname{dim}(X) \neq 0$. Then there exist real numbers k_{1}, k_{2} such that
(i) $0<k_{1}$, and
(ii) $0<k_{2}$, and
(iii) for every element x of X and for every element y of Y such that $x=y$ holds $\|x\| \leqslant k_{1} \cdot\|y\|$ and $\|y\| \leqslant k_{2} \cdot\|x\|$.

The theorem is a consequence of (24).
(26) Let us consider a real normed space V. Suppose V is finite dimensional and $\operatorname{dim}(V) \neq 0$. Then there exist real numbers k_{1}, k_{2} and there exists a linear operator S from V into $\left\langle\mathcal{E}^{\operatorname{dim}(V)},\|\cdot\|\right\rangle$ such that S is bijective and $0 \leqslant k_{1}$ and $0 \leqslant k_{2}$ and for every element x of $V,\|S(x)\| \leqslant k_{1} \cdot\|x\|$ and $\|x\| \leqslant k_{2} \cdot\|S(x)\|$. The theorem is a consequence of (23), (24), and (21).

3. Linear Isometry and its Topological Properties

Let V, W be real normed spaces and L be a linear operator from V into W. We say that L is isometric-like if and only if
(Def. 6) there exist real numbers k_{1}, k_{2} such that $0 \leqslant k_{1}$ and $0 \leqslant k_{2}$ and for every element x of $V,\|L(x)\| \leqslant k_{1} \cdot\|x\|$ and $\|x\| \leqslant k_{2} \cdot\|L(x)\|$.
Now we state the proposition:
(27) Let us consider a finite dimensional real normed space V. $\operatorname{Suppose} \operatorname{dim}(V)$ $\neq 0$. Then there exists a linear operator L from V into $\left\langle\mathcal{E}^{\operatorname{dim}(V)},\|\cdot\|\right\rangle$ such that L is one-to-one, onto, and isometric-like.
The theorem is a consequence of (26).
Let us consider real normed spaces V, W and a linear operator L from V into W. Now we state the propositions:
(28) Suppose L is one-to-one, onto, and isometric-like. Then there exists a linear operator K from W into V such that
(i) $K=L^{-1}$, and
(ii) K is one-to-one, onto, and isometric-like.

Proof: Consider K being a linear operator from W into V such that $K=L^{-1}$ and K is one-to-one and onto. Consider k_{1}, k_{2} being real numbers such that $0 \leqslant k_{1}$ and $0 \leqslant k_{2}$ and for every element x of $V,\|L(x)\| \leqslant k_{1} \cdot\|x\|$ and $\|x\| \leqslant k_{2} \cdot\|L(x)\|$. For every element y of $W,\|K(y)\| \leqslant k_{2} \cdot\|y\|$ and $\|y\| \leqslant k_{1} \cdot\|K(y)\|$.
(29) If L is one-to-one, onto, and isometric-like, then L is Lipschitzian.
(30) If L is one-to-one, onto, and isometric-like, then L is continuous on the carrier of V.
(31) Let us consider real normed spaces S, T, a linear operator I from S into T, and a point x of S. If I is one-to-one, onto, and isometric-like, then I is continuous in x.
The theorem is a consequence of (29).
(32) Let us consider real normed spaces S, T, a linear operator I from S into T, and a subset Z of S. If I is one-to-one, onto, and isometric-like, then I is continuous on Z.
The theorem is a consequence of (31).
Let us consider real normed spaces S, T, a linear operator I from S into T, and a sequence s_{1} of S. Now we state the propositions:
(33) Suppose I is one-to-one, onto, and isometric-like and s_{1} is convergent. Then
(i) $I \cdot s_{1}$ is convergent, and
(ii) $\lim I \cdot s_{1}=I\left(\lim s_{1}\right)$.

The theorem is a consequence of (31).
(34) If I is one-to-one, onto, and isometric-like, then s_{1} is convergent iff $I \cdot s_{1}$ is convergent. The theorem is a consequence of (28) and (33).
Let us consider real normed spaces S, T, a linear operator I from S into T, and a subset Z of S. Now we state the propositions:
(35) If I is one-to-one, onto, and isometric-like, then Z is closed iff $I^{\circ} Z$ is closed.
Proof: Consider J being a linear operator from T into S such that $J=$ I^{-1} and J is one-to-one, onto, and isometric-like. Z is closed iff $I^{\circ} Z$ is closed.
(36) If I is one-to-one, onto, and isometric-like, then Z is open iff $I^{\circ} Z$ is open. The theorem is a consequence of (28) and (35).
(37) If I is one-to-one, onto, and isometric-like, then Z is compact iff $I^{\circ} Z$ is compact.
Proof: Consider J being a linear operator from T into S such that $J=$ I^{-1} and J is one-to-one, onto, and isometric-like. If $I^{\circ} Z$ is compact, then Z is compact.
(38) Let us consider a finite dimensional real normed space V, and a subset X of V. Suppose $\operatorname{dim}(V) \neq 0$. Then X is compact if and only if X is closed and there exists a real number r such that for every point y of V such that $y \in X$ holds $\|y\|<r$. The theorem is a consequence of (6), (27), (35), and (37).

References

[1] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, Karol Pąk, and Josef Urban. Mizar: State-of-the-art and beyond In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, Intelligent Computer Mathematics, volume 9150 of Lecture Notes in Computer Science, pages 261-279. Springer International Publishing, 2015. ISBN 978-3-319-20614-1. doi 10.1007/978-3-319-20615-8_17.
[2] Grzegorz Bancerek, Czesław Bylínski, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, and Karol Pak. The role of the Mizar Mathematical Library for interactive proof development in Mizar Journal of Automated Reasoning, 61(1):9-32, 2018. doi 10.1007/s10817-017-9440-6
[3] Noboru Endou and Yasunari Shidama. Completeness of the real Euclidean space Formalized Mathematics, 13(4):577-580, 2005.
[4] Hiroshi Imura, Morishige Kimura, and Yasunari Shidama. The differentiable functions on normed linear spaces Formalized Mathematics, 12(3):321-327, 2004.
[5] Miyadera Isao. Functional Analysis. Riko-Gaku-Sya, 1972.
[6] Robert Milewski. Associated matrix of linear map Formalized Mathematics, 5(3):339-345, 1996.
[7] Laurent Schwartz. Théorie des ensembles et topologie, tome 1. Analyse. Hermann, 1997.
[8] Yasunari Shidama. Differentiable functions on normed linear spaces. Formalized Mathematics, 20(1):31-40, 2012. doi $10.2478 / \mathrm{v} 10037-012-0005-1$.
[9] Kôsaku Yosida. Functional Analysis. Springer, 1980.

Accepted September 30, 2021

[^0]: ${ }^{1}$ This study was supported in part by JSPS KAKENHI Grant Numbers 17K00182 and 20K19863.

