

Finite Dimensional Real Normed Spaces are Proper Metric Spaces¹

Kazuhisa Nakasho^b Yamaguchi University Yamaguchi, Japan Hiroyuki Okazaki Shinshu University Nagano, Japan

Yasunari Shidama Karuizawa Hotch 244-1 Nagano, Japan

Summary. In this article, we formalize in Mizar [1], [2] the topological properties of finite-dimensional real normed spaces. In the first section, we formalize the Bolzano-Weierstrass theorem, which states that a bounded sequence of points in an n-dimensional Euclidean space has a certain subsequence that converges to a point. As a corollary, it is also shown the equivalence between a subset of an n-dimensional Euclidean space being compact and being closed and bounded.

In the next section, we formalize the definitions of L1-norm (Manhattan Norm) and maximum norm and show their topological equivalence in n-dimensional Euclidean spaces and finite-dimensional real linear spaces. In the last section, we formalize the linear isometries and their topological properties. Namely, it is shown that a linear isometry between real normed spaces preserves properties such as continuity, the convergence of a sequence, openness, closeness, and compactness of subsets. Finally, it is shown that finite-dimensional real normed spaces are proper metric spaces. We referred to [5], [9], and [7] in the formalization.

MSC: 15A04 40A05 46A50 68V20

Keywords: real vector space; topological space; normed spaces; L1-norm; maximum norm; linear isometry; proper metric space

MML identifier: REAL_NS3, version: 8.1.11 5.68.1412

¹This study was supported in part by JSPS KAKENHI Grant Numbers 17K00182 and 20K19863.

1. BOLZANO-WEIERSTRASS THEOREM AND ITS COROLLARY

From now on X denotes a set, n, m, k denote natural numbers, K denotes a field, f denotes an n-element, real-valued finite sequence, and M denotes a matrix over \mathbb{R}_{F} of dimension $n \times m$. Now we state the propositions:

- (1) Let us consider an element x of \mathcal{R}^{n+1} , and an element y of \mathcal{R}^n . If $y = x \upharpoonright n$, then $|y| \leq |x|$.
- (2) Let us consider an element x of \mathcal{R}^{n+1} , and an element w of \mathbb{R} . If w = x(n+1), then $|w| \leq |x|$.
- (3) Let us consider an element x of \mathcal{R}^{n+1} , an element y of \mathcal{R}^n , and an element w of \mathbb{R} . If $y = x \upharpoonright n$ and w = x(n+1), then $|x| \leq |y| + |w|$.
- (4) Let us consider elements x, y of \mathcal{R}^n , and a natural number m. If $m \leq n$, then $(x y) \restriction m = x \restriction m y \restriction m$.
- (5) Let us consider a natural number n, and a sequence x of $\langle \mathcal{E}^n, \| \cdot \| \rangle$. Suppose there exists a real number K such that for every natural number i, $\|x(i)\| < K$. Then there exists a subsequence x_0 of x such that x_0 is convergent.

PROOF: Define $\mathcal{P}[\text{natural number}] \equiv \text{for every sequence } x \text{ of } \langle \mathcal{E}^{\$_1}, \| \cdot \| \rangle$ such that there exists a real number K such that for every natural number $i, \|x(i)\| < K$ there exists a subsequence x_0 of x such that x_0 is convergent. $\mathcal{P}[0]$ by [4, (18)]. For every natural number n such that $\mathcal{P}[n]$ holds $\mathcal{P}[n+1]$. For every natural number $n, \mathcal{P}[n]$. \Box

- (6) Let us consider a real normed space N, and a subset X of N. Suppose X is compact. Then
 - (i) X is closed, and
 - (ii) there exists a real number r such that for every point y of N such that $y \in X$ holds ||y|| < r.
- (7) Let us consider a subset X of $\langle \mathcal{E}^n, \| \cdot \| \rangle$. Then X is compact if and only if X is closed and there exists a real number r such that for every point y of $\langle \mathcal{E}^n, \| \cdot \| \rangle$ such that $y \in X$ holds $\|y\| < r$.

2. L1-NORM AND MAXIMUM NORM

Now we state the propositions:

- (8) Let us consider a non empty natural number n, and an element x of \mathcal{R}^n . Then there exists a real number x_4 such that
 - (i) $x_4 \in \operatorname{rng}|x|$, and
 - (ii) for every natural number i such that $i \in \text{dom } x \text{ holds } |x|(i) \leq x_4$.

PROOF: Set $F = \operatorname{rng}|x|$. Set $x_4 = \sup F$. For every natural number *i* such that $i \in \operatorname{dom} x$ holds $|x|(i) \leq x_4$. \Box

(9) Let us consider a real-valued finite sequence x. Then $0 \leq \sum |x|$.

Let n be a natural number. Assume n is not empty. The functor max-norm(n) yielding a function from \mathcal{R}^n into \mathbb{R} is defined by

(Def. 1) for every element x of \mathcal{R}^n , $it(x) \in \operatorname{rng}|x|$ and for every natural number i such that $i \in \operatorname{dom} x$ holds $|x|(i) \leq it(x)$.

Assume n is not empty. The functor sum-norm(n) yielding a function from \mathcal{R}^n into \mathbb{R} is defined by

(Def. 2) for every element x of \mathcal{R}^n , $it(x) = \sum |x|$.

Now we state the proposition:

- (10) Let us consider an element x of \mathcal{R}^n , and a real number x_4 . Suppose $x_4 \in \operatorname{rng}|x|$ and for every natural number i such that $i \in \operatorname{dom} x$ holds $|x|(i) \leq x_4$. Then
 - (i) $\sum |x| \leq n \cdot x_4$, and
 - (ii) $x_4 \leq |x| \leq \sum |x|$.

PROOF: Set $F = n \mapsto x_4$. For every natural number j such that $j \in \text{Seg } n$ holds $|x|(j) \leq F(j)$. Consider i being an object such that $i \in \text{dom}|x|$ and $x_4 = |x|(i)$. Define $\mathcal{P}[\text{natural number}] \equiv \text{for every element } x \text{ of } \mathcal{R}^{\$_1},$ $|x|^2 \leq (\sum |x|)^2$. For every natural number n such that $\mathcal{P}[n]$ holds $\mathcal{P}[n+1]$. For every natural number $n, \mathcal{P}[n]$. \Box

Let us consider a non empty natural number n, elements x, y of \mathcal{R}^n , and a real number a. Now we state the propositions:

- (11) (i) $0 \leq (\max-norm(n))(x)$, and
 - (ii) $(\max-\operatorname{norm}(n))(x) = 0$ iff $x = \langle \underbrace{0, \dots, 0}_{n} \rangle$, and
 - (iii) $(\max-\operatorname{norm}(n))(a \cdot x) = |a| \cdot (\max-\operatorname{norm}(n))(x)$, and

(iv) $(\max-\operatorname{norm}(n))(x+y) \leq (\max-\operatorname{norm}(n))(x) + (\max-\operatorname{norm}(n))(y)$. PROOF: Set $x_4 = (\max-\operatorname{norm}(n))(x)$. Set $y_2 = (\max-\operatorname{norm}(n))(y)$. Consider j_0 being an object such that $j_0 \in \operatorname{dom}|x|$ and $x_4 = |x|(j_0)$. Consider k_0 being an object such that $k_0 \in \operatorname{dom}|y|$ and $y_2 = |y|(k_0)$. $(\max-\operatorname{norm}(n))(x) = 0$ iff $x = \langle 0, \ldots, 0 \rangle$. $(\max-\operatorname{norm}(n))(a \cdot x) = |a| \cdot (\max-\operatorname{norm}(n))(x)$.

 $(\max-\operatorname{norm}(n))(\overset{"}{x+y}) \leq (\max-\operatorname{norm}(n))(x) + (\max-\operatorname{norm}(n))(y). \square$

(12) (i)
$$0 \leq (\operatorname{sum-norm}(n))(x)$$
, and

(ii) (sum-norm(n))(x) = 0 iff $x = \langle \underbrace{0, \dots, 0}_{n} \rangle$, and

(iii) $(\operatorname{sum-norm}(n))(a \cdot x) = |a| \cdot (\operatorname{sum-norm}(n))(x)$, and

(iv) $(\operatorname{sum-norm}(n))(x+y) \leq (\operatorname{sum-norm}(n))(x) + (\operatorname{sum-norm}(n))(y)$. PROOF: $0 \leq \sum |x|$. $(\operatorname{sum-norm}(n))(x) = 0$ iff $x = \langle \underbrace{0, \dots, 0}_{x} \rangle$. For every

natural number j such that $j \in \text{Seg } n$ holds $|x + y|(j) \leq {n \choose |x|} + |y|)(j)$. \Box

- (13) Let us consider a non empty natural number n, and an element x of \mathcal{R}^n . Then
 - (i) $(\operatorname{sum-norm}(n))(x) \leq n \cdot (\operatorname{max-norm}(n))(x)$, and
 - (ii) $(\max-\operatorname{norm}(n))(x) \leq |x| \leq (\operatorname{sum-norm}(n))(x).$

The theorem is a consequence of (10).

- (14) The RLS structure of $\langle \mathcal{E}^n, \| \cdot \| \rangle = \mathbb{R}^{\operatorname{Seg} n}_{\mathbb{R}}$.
- (15) Let us consider a real number a, elements x, y of $\langle \mathcal{E}^n, \|\cdot\|\rangle$, and elements x_0, y_0 of $\mathbb{R}^{\text{Seg } n}_{\mathbb{R}}$. Suppose $x = x_0$ and $y = y_0$. Then
 - (i) the carrier of $\langle \mathcal{E}^n, \| \cdot \| \rangle$ = the carrier of $\mathbb{R}^{\operatorname{Seg} n}_{\mathbb{R}}$, and

(ii)
$$0_{\langle \mathcal{E}^n, \|\cdot\| \rangle} = 0_{\mathbb{R}^{\operatorname{Seg} n}_{\mathbb{D}}}$$
, and

- (iii) $x + y = x_0 + y_0$, and
- (iv) $a \cdot x = a \cdot x_0$, and
- (v) $-x = -x_0$, and
- (vi) $x y = x_0 y_0$.

The theorem is a consequence of (14).

Let X be a finite dimensional real linear space.

One can check that RLSp2RVSp(X) is finite dimensional.

Now we state the proposition:

(16) Let us consider a finite dimensional real linear space X, an ordered basis b of RLSp2RVSp(X), and an element y of RLSp2RVSp(X). Then $y \to b$ is an element of $\mathcal{R}^{\dim(X)}$.

Let X be a finite dimensional real linear space and b be an ordered basis of $\operatorname{RLSp2RVSp}(X)$. The functor max-norm(X, b) yielding a function from X into \mathbb{R} is defined by

(Def. 3) for every element x of X, there exists an element y of RLSp2RVSp(X) and there exists an element z of $\mathcal{R}^{\dim(X)}$ such that x = y and $z = y \to b$ and $it(x) = (\max\operatorname{norm}(\dim(X)))(z)$.

The functor sum-norm (X, b) yielding a function from X into \mathbb{R} is defined by

(Def. 4) for every element x of X, there exists an element y of RLSp2RVSp(X) and there exists an element z of $\mathcal{R}^{\dim(X)}$ such that x = y and $z = y \to b$ and $it(x) = (\text{sum-norm}(\dim(X)))(z)$.

The functor Euclid-norm(X, b) yielding a function from X into \mathbb{R} is defined by

(Def. 5) for every element x of X, there exists an element y of RLSp2RVSp(X) and there exists an element z of $\mathcal{R}^{\dim(X)}$ such that x = y and $z = y \to b$ and it(x) = |z|.

Now we state the proposition:

(17) Let us consider a natural number n, an element a of \mathbb{R} , an element a_1 of \mathbb{R}_F , elements x, y of \mathcal{R}^n , and elements x_1, y_1 of (the carrier of $\mathbb{R}_F)^n$. Suppose $a = a_1$ and $x = x_1$ and $y = y_1$. Then

(i)
$$a \cdot x = a_1 \cdot x_1$$
, and

(ii) $x + y = x_1 + y_1$.

Let us consider a finite dimensional real linear space X, an ordered basis b of RLSp2RVSp(X), elements x, y of X, and a real number a. Now we state the propositions:

- (18) Suppose $\dim(X) \neq 0$. Then
 - (i) $0 \leq (\max-\operatorname{norm}(X, b))(x)$, and
 - (ii) $(\max-\operatorname{norm}(X, b))(x) = 0$ iff $x = 0_X$, and
 - (iii) $(\max-\operatorname{norm}(X,b))(a \cdot x) = |a| \cdot (\max-\operatorname{norm}(X,b))(x)$, and
 - (iv) $(\max-\operatorname{norm}(X,b))(x+y) \leq (\max-\operatorname{norm}(X,b))(x) + (\max-\operatorname{norm}(X,b))(y).$

The theorem is a consequence of (11).

- (19) Suppose $\dim(X) \neq 0$. Then
 - (i) $0 \leq (\operatorname{sum-norm}(X, b))(x)$, and
 - (ii) $(\operatorname{sum-norm}(X, b))(x) = 0$ iff $x = 0_X$, and
 - (iii) $(\operatorname{sum-norm}(X, b))(a \cdot x) = |a| \cdot (\operatorname{sum-norm}(X, b))(x)$, and
 - (iv) $(\operatorname{sum-norm}(X, b))(x + y) \leq (\operatorname{sum-norm}(X, b))(x) + (\operatorname{sum-norm}(X, b))(y).$

The theorem is a consequence of (12).

- (20) (i) $0 \leq (\text{Euclid-norm}(X, b))(x)$, and
 - (ii) (Euclid-norm(X, b))(x) = 0 iff $x = 0_X$, and
 - (iii) $(\text{Euclid-norm}(X, b))(a \cdot x) = |a| \cdot (\text{Euclid-norm}(X, b))(x)$, and
 - (iv) $(\text{Euclid-norm}(X, b))(x+y) \leq (\text{Euclid-norm}(X, b))(x) + (\text{Euclid-norm}(X, b))(y).$
- (21) Let us consider a finite dimensional real linear space X, an ordered basis b of RLSp2RVSp(X), and an element x of X. Suppose dim(X) $\neq 0$. Then

- (i) $(\operatorname{sum-norm}(X, b))(x) \leq (\dim(X)) \cdot (\operatorname{max-norm}(X, b))(x)$, and
- (ii) $(\max-\operatorname{norm}(X,b))(x) \leq (\operatorname{Euclid-norm}(X,b))(x) \leq (\operatorname{sum-norm}(X,b))(x).$

The theorem is a consequence of (13).

- (22) Let us consider a finite dimensional real linear space V, and an ordered basis b of RLSp2RVSp(V). Suppose dim $(V) \neq 0$. Then there exists a linear operator S from V into $\langle \mathcal{E}^{\dim(V)}, \| \cdot \| \rangle$ such that
 - (i) S is bijective, and
 - (ii) for every element x of RLSp2RVSp(V), $S(x) = x \rightarrow b$.

The theorem is a consequence of (15).

- (23) Let us consider a finite dimensional real normed space V. Suppose dim $(V) \neq 0$. Then there exists a linear operator S from V into $\langle \mathcal{E}^{\dim(V)}, \| \cdot \| \rangle$ and there exists a finite dimensional vector space W over \mathbb{R}_{F} and there exists an ordered basis b of W such that $W = \mathrm{RLSp2RVSp}(V)$ and S is bijective and for every element x of W, $S(x) = x \to b$. The theorem is a consequence of (15).
- (24) Let us consider a real normed space V, a finite dimensional real linear space W, and an ordered basis b of RLSp2RVSp(W). Suppose V is finite dimensional and dim(V) $\neq 0$ and the RLS structure of V = the RLS structure of W. Then there exist real numbers k_1 , k_2 such that
 - (i) $0 < k_1$, and
 - (ii) $0 < k_2$, and
 - (iii) for every point x of V, $||x|| \leq k_1 \cdot (\max-\operatorname{norm}(W, b))(x)$ and $(\max-\operatorname{norm}(W, b))(x) \leq k_2 \cdot ||x||$.

PROOF: Reconsider e = b as a finite sequence of elements of W. Reconsider $e_1 = e$ as a finite sequence of elements of V. Define $\mathcal{F}(\text{natural number}) = ||e_{1/\$_1}|| (\in \mathbb{R})$. Consider k being a finite sequence of elements of \mathbb{R} such that len k = len b and for every natural number i such that $i \in \text{dom } k$ holds $k(i) = \mathcal{F}(i)$. Set $k_1 = \sum k$. For every natural number i such that $i \in \text{dom } k$ holds $0 \leq k(i)$. For every point x of V, $||x|| \leq (k_1+1) \cdot (\text{max-norm}(W,b))(x)$ by [6, (12), (15)], [8, (7)].

Consider S_0 being a linear operator from W into $\langle \mathcal{E}^{\dim(W)}, \|\cdot\|\rangle$ such that S_0 is bijective and for every element x of RLSp2RVSp(W), $S_0(x) = x \rightarrow b$. Reconsider $S = S_0$ as a function from the carrier of V into the carrier of $\langle \mathcal{E}^{\dim(W)}, \|\cdot\|\rangle$. For every elements x, y of V, S(x+y) = S(x) + S(y). For every real number a and for every vector x of $V, S(a \cdot x) = a \cdot S(x)$.

Consider T being a linear operator from $\langle \mathcal{E}^{\dim(W)}, \|\cdot\| \rangle$ into V such that $T = S^{-1}$ and T is one-to-one and onto. For every element x of V, $\|x\| \leq (k_1+1) \cdot \|S(x)\|$. For every element y of $\langle \mathcal{E}^{\dim(W)}, \|\cdot\| \rangle, \|T(y)\| \leq (k_1+1) \cdot \|y\|$. Set $C_2 = \{y, \text{ where } y \text{ is an element of } V : (\max\text{-norm}(W,b))(y) = 1\}.$

Set $C_1 = \{x, \text{ where } x \text{ is an element of } \langle \mathcal{E}^{\dim(W)}, \|\cdot\| \rangle : (\max\operatorname{-norm}(\dim(W)))(x) = 1\}$. For every object z such that $z \in C_2$ holds $z \in \text{the carrier of } V$. For every object z such that $z \in C_1$ holds $z \in \text{the carrier of } \langle \mathcal{E}^{\dim(W)}, \|\cdot\| \rangle$. Consider z_5 being a point of $\langle \mathcal{E}^{\dim(W)}, \|\cdot\| \rangle$ such that $z_5 \neq 0_{\langle \mathcal{E}^{\dim(W)}, \|\cdot\| \rangle}$. Reconsider $z_6 = z_5$ as an element of $\mathcal{R}^{\dim(W)}$. (max-norm(dim $(W)))(z_6) \neq 0. \ 0 < (\max\operatorname{-norm}(\dim(W)))(z_5)$. For every object $y, y \in T^{\circ}C_1$ iff $y \in C_2$. Reconsider $g = \max\operatorname{-norm}(\dim(W))$ as a function from the carrier of $\langle \mathcal{E}^{\dim(W)}, \|\cdot\| \rangle$ into \mathbb{R} . Set D = the carrier of $\langle \mathcal{E}^{\dim(W)}, \|\cdot\| \rangle$. For every point x_0 of $\langle \mathcal{E}^{\dim(W)}, \|\cdot\| \rangle$ and for every real number r such that $x_0 \in D$ and 0 < r there exists a real number s such that 0 < s and for every point x_1 of $\langle \mathcal{E}^{\dim(W)}, \|\cdot\| \rangle$ such that $x_1 \in D$ and $\|x_1 - x_0\| < s$ holds $|g_{/x_1} - g_{/x_0}| < r$.

For every sequence s_1 of $\langle \mathcal{E}^{\dim(W)}, \|\cdot\| \rangle$ such that $\operatorname{rng} s_1 \subseteq C_1$ and s_1 is convergent holds $\lim s_1 \in C_1$. There exists a real number r such that for every point y of $\langle \mathcal{E}^{\dim(W)}, \|\cdot\| \rangle$ such that $y \in C_1$ holds $\|y\| < r$ by (13), [3, (1)]. Reconsider $f = \operatorname{id}_{C_2}$ as a partial function from V to V. Consider y_0 being an element of V such that $y_0 \in \operatorname{dom} \|f\|$ and $\operatorname{inf} \operatorname{rng} \|f\| = \|f\|(y_0)$. Set $k_2 = \|f_{/y_0}\|$. For every element x of V such that $x \in C_2$ holds $k_2 \leq \|x\|$. $k_2 \neq 0$. For every point x of V, $(\operatorname{max-norm}(W, b))(x) \leq \frac{1}{k_2} \cdot \|x\|$. \Box

- (25) Let us consider real normed spaces X, Y. Suppose the RLS structure of X = the RLS structure of Y and X is finite dimensional and dim $(X) \neq 0$. Then there exist real numbers k_1, k_2 such that
 - (i) $0 < k_1$, and
 - (ii) $0 < k_2$, and
 - (iii) for every element x of X and for every element y of Y such that x = yholds $||x|| \leq k_1 \cdot ||y||$ and $||y|| \leq k_2 \cdot ||x||$.

The theorem is a consequence of (24).

(26) Let us consider a real normed space V. Suppose V is finite dimensional and dim(V) $\neq 0$. Then there exist real numbers k_1 , k_2 and there exists a linear operator S from V into $\langle \mathcal{E}^{\dim(V)}, \|\cdot\| \rangle$ such that S is bijective and $0 \leq k_1$ and $0 \leq k_2$ and for every element x of V, $\|S(x)\| \leq k_1 \cdot \|x\|$ and $\|x\| \leq k_2 \cdot \|S(x)\|$. The theorem is a consequence of (23), (24), and (21). 3. LINEAR ISOMETRY AND ITS TOPOLOGICAL PROPERTIES

Let V, W be real normed spaces and L be a linear operator from V into W. We say that L is isometric-like if and only if

(Def. 6) there exist real numbers k_1 , k_2 such that $0 \le k_1$ and $0 \le k_2$ and for every element x of V, $||L(x)|| \le k_1 \cdot ||x||$ and $||x|| \le k_2 \cdot ||L(x)||$.

Now we state the proposition:

(27) Let us consider a finite dimensional real normed space V. Suppose dim $(V) \neq 0$. Then there exists a linear operator L from V into $\langle \mathcal{E}^{\dim(V)}, \|\cdot\|\rangle$ such that L is one-to-one, onto, and isometric-like. The theorem is a consequence of (26).

Let us consider real normed spaces V, W and a linear operator L from V into W. Now we state the propositions:

- (28) Suppose L is one-to-one, onto, and isometric-like. Then there exists a linear operator K from W into V such that
 - (i) $K = L^{-1}$, and
 - (ii) K is one-to-one, onto, and isometric-like.

PROOF: Consider K being a linear operator from W into V such that $K = L^{-1}$ and K is one-to-one and onto. Consider k_1, k_2 being real numbers such that $0 \leq k_1$ and $0 \leq k_2$ and for every element x of V, $||L(x)|| \leq k_1 \cdot ||x||$ and $||x|| \leq k_2 \cdot ||L(x)||$. For every element y of W, $||K(y)|| \leq k_2 \cdot ||y||$ and $||y|| \leq k_1 \cdot ||K(y)||$. \Box

- (29) If L is one-to-one, onto, and isometric-like, then L is Lipschitzian.
- (30) If L is one-to-one, onto, and isometric-like, then L is continuous on the carrier of V.
- (31) Let us consider real normed spaces S, T, a linear operator I from S into T, and a point x of S. If I is one-to-one, onto, and isometric-like, then I is continuous in x.

The theorem is a consequence of (29).

(32) Let us consider real normed spaces S, T, a linear operator I from S into T, and a subset Z of S. If I is one-to-one, onto, and isometric-like, then I is continuous on Z.

The theorem is a consequence of (31).

Let us consider real normed spaces S, T, a linear operator I from S into T, and a sequence s_1 of S. Now we state the propositions:

(33) Suppose I is one-to-one, onto, and isometric-like and s_1 is convergent. Then

- (i) $I \cdot s_1$ is convergent, and
- (ii) $\lim I \cdot s_1 = I(\lim s_1).$

The theorem is a consequence of (31).

(34) If I is one-to-one, onto, and isometric-like, then s_1 is convergent iff $I \cdot s_1$ is convergent. The theorem is a consequence of (28) and (33).

Let us consider real normed spaces S, T, a linear operator I from S into T, and a subset Z of S. Now we state the propositions:

(35) If I is one-to-one, onto, and isometric-like, then Z is closed iff $I^{\circ}Z$ is closed. PROOF: Consider J being a linear operator from T into S such that J =

I and *J* is one-to-one, onto, and isometric-like. *Z* is closed iff $I^{\circ}Z$ is closed. \Box

- (36) If I is one-to-one, onto, and isometric-like, then Z is open iff $I^{\circ}Z$ is open. The theorem is a consequence of (28) and (35).
- (37) If I is one-to-one, onto, and isometric-like, then Z is compact iff $I^{\circ}Z$ is compact. PROOF: Consider J being a linear operator from T into S such that $J = I^{-1}$ and J is one-to-one, onto, and isometric-like. If $I^{\circ}Z$ is compact, then Z is compact. \Box
- (38) Let us consider a finite dimensional real normed space V, and a subset X of V. Suppose dim $(V) \neq 0$. Then X is compact if and only if X is closed and there exists a real number r such that for every point y of V such that $y \in X$ holds ||y|| < r. The theorem is a consequence of (6), (27), (35), and (37).

References

- [1] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, Karol Pak, and Josef Urban. Mizar: State-of-the-art and beyond. In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, *Intelligent Computer Mathematics*, volume 9150 of *Lecture Notes in Computer Science*, pages 261–279. Springer International Publishing, 2015. ISBN 978-3-319-20614-1. doi:10.1007/978-3-319-20615-8_17.
- [2] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, and Karol Pąk. The role of the Mizar Mathematical Library for interactive proof development in Mizar. *Journal of Automated Reasoning*, 61(1):9–32, 2018. doi:10.1007/s10817-017-9440-6.
- [3] Noboru Endou and Yasunari Shidama. Completeness of the real Euclidean space. Formalized Mathematics, 13(4):577–580, 2005.
- [4] Hiroshi Imura, Morishige Kimura, and Yasunari Shidama. The differentiable functions on normed linear spaces. *Formalized Mathematics*, 12(3):321–327, 2004.
- [5] Miyadera Isao. Functional Analysis. Riko-Gaku-Sya, 1972.
- [6] Robert Milewski. Associated matrix of linear map. Formalized Mathematics, 5(3):339–345, 1996.

- [7] Laurent Schwartz. Théorie des ensembles et topologie, tome 1. Analyse. Hermann, 1997.
- [8] Yasunari Shidama. Differentiable functions on normed linear spaces. Formalized Mathematics, 20(1):31–40, 2012. doi:10.2478/v10037-012-0005-1.
- [9] Kôsaku Yosida. Functional Analysis. Springer, 1980.

Accepted September 30, 2021