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Summary. In this paper problems 14, 15, 29, 30, 34, 78, 83, 97, and 116
from [6] are formalized, using the Mizar formalism [1], [2], [3]. Some properties
related to the divisibility of prime numbers were proved. It has been shown that
the equation of the form p2 + 1 = q2 + r2, where p, q, r are prime numbers, has
at least four solutions and it has been proved that at least five primes can be
represented as the sum of two fourth powers of integers. We also proved that for
at least one positive integer, the sum of the fourth powers of this number and its
successor is a composite number. And finally, it has been shown that there are
infinitely many odd numbers k greater than zero such that all numbers of the
form 22

n

+ k (n = 1, 2, . . . ) are composite.
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1. Preliminaries

Let D be a non empty set, f be a D-valued finite sequence, and i be a natural
number. One can verify that f�i is D-valued.

From now on a, b, i, k, m, n denote natural numbers, s, z denote non zero
natural numbers, and c denotes a complex number.

Now we state the propositions:

(1) c5 = c · c · c · c · c.
(2) c6 = c · c · c · c · c · c. The theorem is a consequence of (1).
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(3) c7 = c · c · c · c · c · c · c. The theorem is a consequence of (2).

(4) c8 = c · c · c · c · c · c · c · c. The theorem is a consequence of (3).

(5) c9 = c · c · c · c · c · c · c · c · c. The theorem is a consequence of (4).

(6) c10 = c · c · c · c · c · c · c · c · c · c. The theorem is a consequence of (5).

(7) If a = n− 1 and k < n, then k = 0 or ... or k = a.

(8) −1 div 3 = −1.

(9) −1 mod 3 = 2. The theorem is a consequence of (8).

(10) 30 is not prime.

2. Divisibility of Natural Numbers

Now we state the propositions:

(11) If n < 31 and n is prime, then n = 2 or n = 3 or n = 5 or n = 7 or
n = 11 or n = 13 or n = 17 or n = 19 or n = 23 or n = 29. The theorem
is a consequence of (10).

(12) If k < 961 and n ·n ¬ k and n is prime, then n = 2 or n = 3 or n = 5 or
n = 7 or n = 11 or n = 13 or n = 17 or n = 19 or n = 23 or n = 29. The
theorem is a consequence of (11).

(13) 113 is prime.
Proof: For every element n of N such that 1 < n and n · n ¬ 113 and n

is prime holds n - 113. �

(14) 337 is prime.
Proof: For every element n of N such that 1 < n and n · n ¬ 337 and n

is prime holds n - 337. �

(15) 881 is prime.
Proof: For every element n of N such that 1 < n and n · n ¬ 881 and n

is prime holds n - 881 by [4, (9)], (12). �

(16) If k < a, then a · b+ k mod a = k.

(17) a | as + az.

(18) a | as − az.
(19) a | as · (az).

Let p, q be prime natural numbers. One can verify that p · q is non prime.
Now we state the propositions:

(20) 11 | 2341 − 2. The theorem is a consequence of (6).

(21) 31 | 2341 − 2. The theorem is a consequence of (1).

(22) There exists k such that n = z · k + 0 or ... or n = z · k + (z − 1).
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(23) There exists k such that n = 3 · k or n = 3 · k + 1 or n = 3 · k + 2. The
theorem is a consequence of (22).

(24) There exists k such that n = 4 · k or n = 4 · k + 1 or n = 4 · k + 2 or
n = 4 · k + 3. The theorem is a consequence of (22).

(25) There exists k such that n = 5 · k or n = 5 · k + 1 or n = 5 · k + 2 or
n = 5 · k + 3 or n = 5 · k + 4. The theorem is a consequence of (22).

(26) There exists k such that n = 6 · k or n = 6 · k + 1 or n = 6 · k + 2 or
n = 6 ·k+ 3 or n = 6 ·k+ 4 or n = 6 ·k+ 5. The theorem is a consequence
of (22).

(27) There exists k such that n = 7 · k or n = 7 · k + 1 or n = 7 · k + 2 or
n = 7 · k+ 3 or n = 7 · k+ 4 or n = 7 · k+ 5 or n = 7 · k+ 6. The theorem
is a consequence of (22).

(28) There exists k such that n = 8 · k or n = 8 · k + 1 or n = 8 · k + 2 or
n = 8 ·k+ 3 or n = 8 ·k+ 4 or n = 8 ·k+ 5 or n = 8 ·k+ 6 or n = 8 ·k+ 7.
The theorem is a consequence of (22).

(29) There exists k such that n = 9 · k or n = 9 · k + 1 or n = 9 · k + 2 or
n = 9 · k+ 3 or n = 9 · k+ 4 or n = 9 · k+ 5 or n = 9 · k+ 6 or n = 9 · k+ 7
or n = 9 · k + 8. The theorem is a consequence of (22).

(30) There exists k such that n = 10 · k or n = 10 · k + 1 or n = 10 · k + 2
or n = 10 · k + 3 or n = 10 · k + 4 or n = 10 · k + 5 or n = 10 · k + 6
or n = 10 · k + 7 or n = 10 · k + 8 or n = 10 · k + 9. The theorem is
a consequence of (22).

(31) 3 - n if and only if there exists k such that n = 3 · k + 1 or n = 3 · k + 2.
The theorem is a consequence of (23).

(32) 4 - n if and only if there exists k such that n = 4 · k + 1 or n = 4 · k + 2
or n = 4 · k + 3. The theorem is a consequence of (24).

(33) 5 - n if and only if there exists k such that n = 5 · k + 1 or n = 5 · k + 2
or n = 5 · k + 3 or n = 5 · k + 4. The theorem is a consequence of (25).

(34) 6 - n if and only if there exists k such that n = 6 ·k+1 or n = 6 ·k+2 or
n = 6 ·k+ 3 or n = 6 ·k+ 4 or n = 6 ·k+ 5. The theorem is a consequence
of (26).

(35) 7 - n if and only if there exists k such that n = 7 ·k+1 or n = 7 ·k+2 or
n = 7 · k+ 3 or n = 7 · k+ 4 or n = 7 · k+ 5 or n = 7 · k+ 6. The theorem
is a consequence of (27).

(36) 8 - n if and only if there exists k such that n = 8 ·k+1 or n = 8 ·k+2 or
n = 8 ·k+ 3 or n = 8 ·k+ 4 or n = 8 ·k+ 5 or n = 8 ·k+ 6 or n = 8 ·k+ 7.
The theorem is a consequence of (28).

(37) 9 - n if and only if there exists k such that n = 9 ·k+1 or n = 9 ·k+2 or
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n = 9 · k+ 3 or n = 9 · k+ 4 or n = 9 · k+ 5 or n = 9 · k+ 6 or n = 9 · k+ 7
or n = 9 · k + 8. The theorem is a consequence of (29).

(38) 10 - n if and only if there exists k such that n = 10 ·k+1 or n = 10 ·k+2
or n = 10 · k + 3 or n = 10 · k + 4 or n = 10 · k + 5 or n = 10 · k + 6
or n = 10 · k + 7 or n = 10 · k + 8 or n = 10 · k + 9. The theorem is
a consequence of (30).

(39) 22z mod 3 = 1.
Proof: Define P[non zero natural number] ≡ 22$1 mod 3 = 1. P[1] by [5,
(1)]. For every s such that P[s] holds P[s+ 1]. For every s, P[s]. �

Let n be an integer. We say that n is composite if and only if

(Def. 1) 2 ¬ n and n is not prime.

One can check that there exists an integer which is composite and there exists
a natural number which is composite and every integer which is composite is
also positive and every integer which is prime is also non composite and every
integer which is composite is also non prime.

Let m, n be composite natural numbers. Observe that m · n is composite.
Now we state the proposition:

(40) If n is composite, then 4 ¬ n.

3. Main Problems

Now we state the propositions:

(41) Suppose 1 ¬ i ¬ len〈
(n

0

)
a0bn, . . . ,

(n
n

)
anb0〉 −m.

Then am | 〈
(n

0

)
a0bn, . . . ,

(n
n

)
anb0〉(i).

(42) n2 | (n+ 1)n − 1.
Proof: Set P = 〈

(n
0

)
n01n, . . . ,

(n
n

)
nn10〉. Set c = lenP . Set F = P�c. For

every natural number b such that b ∈ domF holds n2 | F (b). �

(43) (2n − 1)2 | 2(2n−1)·n − 1. The theorem is a consequence of (42).

(44) (i) 6 - 26 − 2, and

(ii) 6 | 36 − 3, and

(iii) there exists no natural number n such that n < 6 and n - 2n − 2 and
n | 3n − 3.

The theorem is a consequence of (2), (34), (7), and (32).

(45) Let us consider a non zero natural number a. Then there exists a non
prime natural number n such that n | an−a. The theorem is a consequence
of (18), (20), and (21).

(46) If 7 - a, then there exists k such that a2 = 7 · k + 1 or a2 = 7 · k + 2 or
a2 = 7 · k + 4. The theorem is a consequence of (35).
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(47) There exists k such that a2 = 7 · k or a2 = 7 · k + 1 or a2 = 7 · k + 2 or
a2 = 7 · k + 4. The theorem is a consequence of (46).

(48) If 7 - a, then a2 mod 7 = 1 or a2 mod 7 = 2 or a2 mod 7 = 4. The
theorem is a consequence of (46) and (16).

(49) (i) a2 mod 7 = 0, or

(ii) a2 mod 7 = 1, or

(iii) a2 mod 7 = 2, or

(iv) a2 mod 7 = 4.
The theorem is a consequence of (46) and (16).

(50) Suppose there exists k such that a = 7·k+1 or a = 7·k+2 or a = 7·k+4
and there exists k such that b = 7 · k + 1 or b = 7 · k + 2 or b = 7 · k + 4.
Then there exists k such that a+ b = 7 · k + 1 or ... or a+ b = 7 · k + 6.

(51) Suppose (amod 7 = 1 or amod 7 = 2 or amod 7 = 4) and (bmod 7 = 1 or
bmod 7 = 2 or bmod 7 = 4). Then a+bmod 7 = 1 or ... or a+bmod 7 = 6.
The theorem is a consequence of (16).

(52) If 7 | a2 + b2, then 7 | a and 7 | b. The theorem is a consequence of (48)
and (49).

(53) (i) 132 + 1 = 72 + 112, and

(ii) 172 + 1 = 112 + 132, and

(iii) 232 + 1 = 132 + 192, and

(iv) 312 + 1 = 112 + 292.

(54) (i) 2 = 14 + 14, and

(ii) 17 = 14 + 24, and

(iii) 97 = 24 + 34, and

(iv) 257 = 14 + 44, and

(v) 641 = 24 + 54.

(55) 04 + (0 + 1)4 is not composite.

(56) 14 + (1 + 1)4 is not composite.

(57) 24 + (2 + 1)4 is not composite.

(58) 34 + (3 + 1)4 is not composite.

(59) 44 + (4 + 1)4 is not composite.

(60) (i) 54 + (5 + 1)4 is composite, and

(ii) there exists no natural number n such that n < 5 and n4 + (n+ 1)4

is composite.
The theorem is a consequence of (13), (56), (57), (58), and (59).
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(61) If 1 ¬ a, then 22n + (6 · a− 1) > 6.

(62) 3 | 22z + (6 · a− 1). The theorem is a consequence of (9) and (39).

(63) If 1 ¬ a, then 22z +(6 ·a−1) is not prime. The theorem is a consequence
of (62) and (61).

(64) If 1 ¬ a, then 22z +(6 ·a−1) is composite. The theorem is a consequence
of (61) and (63).

(65) Let us consider a non zero natural number z. Then {k, where k is a na-
tural number : k is odd and 22z + k is composite} is infinite.
Proof: Set S = {k, where k is a natural number : k is odd and 22z +
k is composite}. Define F(natural number) = 6 · $1 − 1. Consider f being
a many sorted set indexed by N+ such that for every element n of N+,
f(n) = F(n). Set R = rng f . R ⊆ S. For every element m of N, there
exists an element n of N such that n ­ m and n ∈ R. �
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