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Summary. The use of registrations is useful in shortening Mizar proofs [1],
[2], both in terms of formalization time and article space. The proposed system of
classes for complex numbers aims to facilitate proofs involving basic arithmetical
operations and order checking. It seems likely that the use of self-explanatory
adjectives could also improve legibility of these proofs, which would be an impor-
tant achievement [3]. Additionally, some potentially useful definitions, following
those defined for real numbers, are introduced.
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Let a be a complex number. One can check that (a−1)−1 reduces to a.
We say that a is heavy if and only if

(Def. 1) |a| > 1.

We say that a is light if and only if

(Def. 2) |a| < 1.

We say that a is weightless if and only if

(Def. 3) |a| = 0 or |a| = 1.

Let us consider a real number a. Now we state the propositions:

(1) (i) a is heavy and negative iff a < −1, and

(ii) a is light and negative iff −1 < a < 0, and

(iii) a is light and positive iff 0 < a < 1, and

(iv) a is heavy and positive iff a > 1, and
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(v) a is weightless and positive iff a = 1, and

(vi) a is weightless and negative iff a = −1.

(2) (i) a is non light and negative iff a ¬ −1, and

(ii) a is non heavy and negative iff −1 ¬ a < 0, and

(iii) a is non heavy and positive iff 0 < a ¬ 1, and

(iv) a is non light and positive iff 1 ¬ a.
(3) a is weightless if and only if a = sgn(a).
Proof: If a is weightless, then a = sgn(a). If a = sgn(a), then a is
weightless. �

Let us note that every complex number which is zero is also weightless
and every complex number which is heavy is also non light and every complex
number which is non light is also non zero and every complex number which is
heavy is also non weightless and every non zero complex number which is light
is also non weightless and every integer which is light is also zero.

Every natural number which is trivial is also weightless and every natural
number which is non heavy is also trivial and every natural number which is
non zero is also non light and every natural number which is non trivial is also
heavy and every complex number which is weightless is also non heavy and every
complex number which is light is also non heavy and every non negative real
number which is non light is also positive.

There exists a positive real number which is heavy and there exists a negative
real number which is heavy and there exists a positive real number which is
light and there exists a negative real number which is light and there exists
a weightless integer which is positive and there exists a weightless integer which
is negative.

Let us consider a complex number a. Now we state the propositions:

(4) <(a) ­ −|a|.
(5) =(a) ­ −|a|.
(6) |<(a)|+ |=(a)| ­ |a|.
Let a be a complex number. Let us observe that a · (a−1) is trivial and a · a

is real and a · a2 is non negative and a
|a| is weightless.

The functor director(a) yielding a weightless complex number is defined by
the term

(Def. 4) a
|a| .

Let us consider a complex number a. Now we state the propositions:

(7) a = |a| · director(a).

(8) director(−a) = −director(a).
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Let a be a real number. We identify sgn(a) with director(a). Observe that
director(a) is integer.

Let a be a negative real number. One can verify that director(a) is negative.
Let a be a positive real number. Note that director(a) is positive.
Let us note that director(0) reduces to 0.
Let a be a non weightless complex number. Let us note that |a| is positive

and −a is non weightless and a is non weightless and a−1 is non weightless.
Let a be a weightless complex number. Observe that −a is weightless and

a is weightless and a−1 is weightless and a · a is weightless and |<(a)| is non
heavy and |=(a)| is non heavy and |a| − 1 is weightless and 1− |a| is weightless.

Let a be a weightless real number. One can verify that sgn(a) reduces to a.
Let a be a heavy complex number. One can verify that −a is heavy and a is

heavy and a−1 is light and a · a is heavy and |<(a)|+ |=(a)| is heavy and |a|− 1
is positive and 1− |a| is negative.

Let a be a non light complex number. Note that −a is non light and a is
non light and a−1 is non heavy and a · a is non light and |<(a)|+ |=(a)| is non
light and |a| − 1 is non negative and 1− |a| is non positive.

Let a be a light complex number. Observe that −a is light and a is light
and a · a is light and |a| − 1 is negative and 1− |a| is positive and <(a) is light
and =(a) is light and <(a) − 1 is negative and <(a) − 2 is heavy and =(a) − 1
is negative and =(a)− 2 is heavy.

Let a be a non zero, light complex number. Note that a−1 is heavy.
Let a be a non heavy complex number. Let us note that −a is non heavy

and a is non heavy and a · a is non heavy and |a| − 1 is non positive and 1− |a|
is non negative and <(a) is non heavy and =(a) is non heavy and <(a) − 1 is
non positive and =(a)− 1 is non positive.

Let a be a non zero, non heavy complex number. Let us observe that a−1 is
non light.

Let a be a complex number. The functor rsgn(a) yielding a non heavy com-
plex number is defined by the term

(Def. 5) <(director(a)).

The functor isgn(a) yielding a non heavy complex number is defined by the
term

(Def. 6) =(director(a)).

Let a be a real number. We identify sgn(a) with rsgn(a). One can check that
isgn(a) is zero and frac a is light and |a| + a is non negative and |a| − a is non
negative.

Let a be a heavy, positive real number. Observe that a − 1 is positive and
1− a is negative.
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Let a be a light, positive real number. One can check that a− 1 is negative
and 1− a is positive.

Now we state the propositions:

(9) Every non heavy complex number is light or weightless.

(10) Every non light complex number is heavy or weightless.

(11) Let us consider a heavy, positive real number a, and a non heavy real
number b. Then a > b > −a. The theorem is a consequence of (1).

(12) Let us consider a non light, positive real number a, and a light real
number b. Then a > b > −a. The theorem is a consequence of (1).

Let a be a heavy complex number and b be a non light complex number.
Observe that a · b is heavy.

Let a, b be non light complex numbers. Note that a · b is non light.
Let a be a light complex number and b be a non heavy complex number.

One can check that a · b is light.
Let a, b be non heavy complex numbers. Let us observe that a · b is non

heavy.
Let a, b be weightless complex numbers. Let us note that a · b is weightless.
Let a be a complex number. The functor cfrac(a) yielding a light complex

number is defined by the term

(Def. 7) director(a) · frac |a|.
Now we state the proposition:

(13) Let us consider a complex number a. Then cfrac(−a) = −cfrac(a). The
theorem is a consequence of (8).

Let a be a non negative real number. We identify cfrac(a) with frac a. Now
we state the proposition:

(14) Let us consider a complex number a, and a natural number n. Then
|a|n = |an|.
Proof: Define P[natural number] ≡ |a|$1 = |a$1 |. P[0]. For every natural
number k such that P[k] holds P[k+ 1]. For every natural number l, P[l].
�

Let a be a weightless complex number and n be a natural number. One can
check that an is weightless.

Let a be a weightless real number. One can verify that a2·n−1 is weightless.
Let a be a non light complex number. Let us note that an is non light.
Let a be a non light real number. One can check that a2·n−1 is non negative.
Let a be a light complex number and n be a non zero natural number. Note

that an is light and n
√
a is light.

Let a be a light real number. Let us observe that a2·n − 1 is negative.
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Let a be a non heavy complex number and n be a natural number. One can
check that an is non heavy.

Let a be a non heavy real number. Observe that a2·n − 1 is non positive.
Let a be a heavy complex number and n be a non zero natural number. Let

us observe that an is heavy and n
√
a is heavy.

Let a be a non weightless complex number. One can check that an is non
weightless.

Let a be a weightless complex number. Let us observe that n
√
a is weightless.

Let a be a non weightless complex number. Observe that n
√
a is non weigh-

tless.
Let a be a non light complex number. Note that n

√
a is non light.

Let a be a non heavy complex number. One can verify that n
√
a is non heavy.

Let a, b be weightless complex numbers. Observe that ab is weightless.
Let a be a non heavy complex number and b be a heavy complex number.

Observe that ab is light.
Let a be a light complex number and b be a non light complex number.

Observe that ab is light.
Let a be a non light complex number and b be a non zero, light complex

number. Let us observe that ab is heavy.
Let a be a heavy complex number and b be a non zero, non heavy complex

number. One can verify that ab is heavy.
Let a be a heavy, positive real number and b be a non negative real number.

Note that a+ b is heavy.
Let a be a heavy, negative real number and b be a non positive real number.

Let us observe that a+ b is heavy.
Let a be a non light, positive real number and b be a positive real number.

One can check that a+ b is heavy.
Let a be a non light, negative real number and b be a negative real number.

Let us note that a+ b is heavy.
Let a be a non heavy real number and b be a heavy, positive real number.

Let us observe that a+ b is positive.
Let a be a light real number and b be a non light, positive real number. Note

that a+ b is positive.
Let a be a non heavy real number. Note that a+ b is non negative.
Let b be a heavy, negative real number. Observe that a+ b is negative.
Let a be a light real number and b be a non light, negative real number. One

can check that a+ b is negative.
Let a be a non heavy real number. One can check that a+ b is non positive.
Let a be a light, positive real number and c be a light, negative real number.

One can verify that a+ c is light.
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Let a be a non heavy, positive real number and c be a non heavy, negative
real number. Let us note that a+ c is non heavy.

Let a, b be real numbers. One can check that a−min(a, b) is non negative.
Let a, b be weightless real numbers. Observe that min(a, b) is weightless and

max(a, b) is weightless.
Let a, b be light real numbers. Note that min(a, b) is light and max(a, b) is

light.
Let a, b be heavy real numbers. One can verify that min(a, b) is heavy and

max(a, b) is heavy.
Let a, b be positive real numbers. Observe that min(a,b)max(a,b) is non heavy and

max(a,b)
min(a,b) is non light and a+ba is heavy and a

a+b is light.
Let us consider real numbers a, b. Now we state the propositions:

(15) If a · b is positive, then |a− b| < |a+ b|.
(16) If a · b is negative, then |a− b| > |a+ b|.
(17) Let us consider non zero real numbers a, b. Then |a2 − b2| < |a2 + b2|.

The theorem is a consequence of (15).

(18) Let us consider positive real numbers a, b, c. If a < b, then b+ca+c is heavy.

(19) Let us consider positive real numbers a, b. Then
a
b
+ b
a
2 ­ 1.

(20) Let us consider negative real numbers a, b. Then
a
b
+ b
a
2 ­ 1.

(21) Let us consider a negative real number a, and a positive real number b.

Then
a
b
+ b
a
2 ¬ −1.

Let a, b be non zero real numbers. Let us note that
a
b
+ b
a
2 is non light and

a
b + b

a is heavy.
Now we state the proposition:

(22) Let us consider non zero real numbers a, b. Then (ab + b
a)
2 ­ 4. The

theorem is a consequence of (1).

Let a, b be positive real numbers. Note that (a+2·b)·a
(a+b)2

is non heavy and ba+
a
b−1

is non light and (a+b)·(a
−1+b−1)
4 is non light.

Let a, b be light real numbers. Let us note that a+b
1+a·b is non heavy.

Let a, b, c, d be positive real numbers. Note that a
a+b+d + b

a+b+c + c
b+c+d +

d
a+c+d is heavy.

Let a be a non negative real number. Observe that |−a| reduces to a.
Observe that there exists a natural number which is trivial and non zero and

there exists a natural number which is trivial.
Let a, b be non zero real numbers. One can verify that min(a, b) is non zero

and max(a, b) is non zero.
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Let a be a non negative real number and b be a real number. Let us note
that max(a, b) is non negative.

Let a be a non positive real number. One can check that min(a, b) is non
positive.

Let a be a positive real number. One can verify that max(a, b) is positive.
Let a be a negative real number. One can verify that min(a, b) is negative.
Let a, b be non negative real numbers. Observe that min(a, b) is non negative.
Let a, b be non positive real numbers. One can verify that max(a, b) is non

positive.
Let a be a positive real number and b be a non negative real number. Observe

that a
a+b is non heavy and a+ba is non light.

Let a, b be positive real numbers. One can verify that a
max(a,b) is non heavy

and a
min(a,b) is non light. Now we state the propositions:

(23) Let us consider real numbers a, b. If sgn(a) > sgn(b), then a > b.

(24) Let us consider non zero real numbers a, b. Suppose sgn(a) > sgn(b).
Then

(i) a is positive, and

(ii) b is negative.

Let a, b be real numbers. Let us note that max(a, b) − min(a, b) is non
negative.

One can check that (sgn(a− b)) · (max(a, b)−min(a, b)) reduces to a− b.
Let a be a real number. Note that a1 reduces to a and 1a reduces to 1. One

can check that a0 is natural and a0 is weightless.
Let a be a positive real number and b be a real number. One can check that

ab is positive.
Let a be a weightless, positive real number and b be a positive real number.

Let us note that ba reduces to b.
Let a be a heavy, positive real number. Observe that ab is heavy.
Let b be a negative real number. Note that ab is light.
Let a be a light, positive real number and b be a positive real number. Note

that ab is light.
Let b be a negative real number. Note that ab is heavy.
Let a be a non weightless, positive real number and b be a real number.

Observe that loga(a
b) reduces to b.

Let b be a positive real number. Observe that aloga b reduces to b.
Now we state the propositions:

(25) Let us consider positive real numbers a, b. Then a > b if and only if
1
a <

1
b .
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(26) Let us consider negative real numbers a, b. Then a > b if and only if
1
a <

1
b .

(27) Let us consider positive real numbers a, b. Then 1a >
1
b if and only if

−a > −b.
(28) Let us consider negative real numbers a, b. Then 1a >

1
b if and only if

−a > −b.
(29) Let us consider positive real numbers a, b. Then sgn( 1a−

1
b ) = sgn(b−a).

(30) Let us consider negative real numbers a, b. Then sgn( 1a−
1
b ) = sgn(b−a).

Let us consider non zero real numbers a, b. Now we state the propositions:

(31) sgn( 1a −
1
b ) = sgn(b − a) if and only if sgn(b) = sgn(a). The theorem is

a consequence of (29), (30), and (24).

(32) a+ b = a · b if and only if 1a + 1
b = 1.

Let us consider positive real numbers a, b. Now we state the propositions:

(33) a+ b > a · b if and only if 1a + 1
b > 1.

(34) a + b < a · b if and only if 1a + 1
b < 1. The theorem is a consequence of

(32) and (33).

(35) Let us consider a non heavy, positive real number a, and a positive real
number b. Then a+ b > a · b. The theorem is a consequence of (33).

(36) Let us consider non zero real numbers a, b. Then a− b = a · b if and only
if 1b −

1
a = 1.

(37) Let us consider positive real numbers a, b. If a− b = a · b, then b is light.
The theorem is a consequence of (1) and (36).

Let us consider positive real numbers a, b, c, d. Now we state the proposi-
tions:

(38) If a+ b = c+ d, then max(a, b)−max(c, d) = min(c, d)−min(a, b).

(39) If a+ b = c+ d, then max(a, b) = max(c, d) iff min(a, b) = min(c, d).

(40) If a+ b = c+d, then max(a, b) > max(c, d) iff min(a, b) < min(c, d). The
theorem is a consequence of (38).

(41) If a+ b = c+d and a · b = c ·d, then max(a, b) = max(c, d). The theorem
is a consequence of (38).

Let us consider positive real numbers a, b, c, d and a real number n. Now
we state the propositions:

(42) If a+ b = c+ d and a · b = c · d, then an + bn = cn + dn. The theorem is
a consequence of (41).

(43) If a+ b = c+ d and an + bn 6= cn + dn, then a · b 6= c · d.
Let us consider positive real numbers a, b, c, d. Now we state the proposi-

tions:
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(44) If a+ b = c+ d, then 1a + 1
b = 1

c + 1
d iff a · b = c · d.

(45) If a+ b = c+ d, then 1a + 1
b >

1
c + 1

d iff a · b < c · d.
(46) If a+ b ­ c+ d and a · b < c · d, then 1a + 1

b >
1
c + 1

d .

(47) If a · b < c · d and 1a + 1
b ¬

1
c + 1

d , then a+ b < c+ d.

(48) If a+ b ¬ c+ d and 1a + 1
b >

1
c + 1

d , then a · b < c · d.
(49) If a · b ­ c · d, then a+ b > c+ d or 1a + 1

b ¬
1
c + 1

d .

(50) Let us consider positive real numbers a, b, and real numbers n, m. Then

(i) am+n + bm+n = (am+bm)·(an+bn)+(an−bn)·(am−bm)
2 , and

(ii) am+n − bm+n = (am+bm)·(an−bn)+(an+bn)·(am−bm)
2 .

(51) Let us consider positive real numbers a, b, and a real number n. Then
an+1+ bn+1 = (an+bn)·(a+b)+(a−b)·(an−bn)

2 . The theorem is a consequence of
(50).

Let us consider positive real numbers a, b and positive real numbers n, m.
Now we state the propositions:

(52) an+m + bn+m ­ (a
n+bn)·(am+bm)

2 .
Proof: (an − bn) · (am − bm) ­ 0. �

(53) an+m + bn+m = (an+bn)·(am+bm)
2 if and only if a = b.

Proof: If a = b, then an+m + bn+m = (an+bn)·(am+bm)+0
2 . If a 6= b, then

(an − bn) · (am − bm) > 0. �

Let us consider positive real numbers a, b, c, d. Now we state the proposi-
tions:

(54) If a+ b ¬ c+ d and max(a, b) > max(c, d), then a · b < c · d.
(55) If a + b ¬ c + d and a · b > c · d, then max(a, b) < max(c, d) and

min(a, b) > min(c, d). The theorem is a consequence of (54).

(56) max(a, b) = max(c, d) and min(a, b) = min(c, d) if and only if a · b = c · d
and a+ b = c+ d. The theorem is a consequence of (41).

(57) Let us consider non negative real numbers a, b, and a positive real num-
ber c. Then a ­ b if and only if ac ­ bc.

(58) Let us consider non negative real numbers a, b, n. Then

(i) max(an, bn) = (max(a, b))n, and

(ii) min(an, bn) = (min(a, b))n.

The theorem is a consequence of (57).

(59) Let us consider positive real numbers a, b, c, d. Suppose a · b > c · d and
a
b ­

c
d or a · b ­ c · d and ab >

c
d . Then a > c.

(60) Let us consider a positive real number a. Then 1− a < 1
1+a .
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(61) Let us consider a light, positive real number a. Then 1 + a < 1
1−a .

(62) Let us consider positive real numbers a, b, a non negative real number
m, and a positive real number n. If am + bm ¬ 1, then am+n + bm+n < 1.
The theorem is a consequence of (1).

(63) Let us consider positive real numbers a, b, a non positive real number
m, and a negative real number n. If am + bm ¬ 1, then am+n + bm+n < 1.
The theorem is a consequence of (62).

(64) Let us consider positive real numbers a, b, c, n, and a non negative real
number m. If am + bm ¬ cm, then am+n + bm+n < cm+n. The theorem is
a consequence of (62).

(65) Let us consider positive real numbers a, b, and a heavy, positive real
number n. Then an+ bn < (a+ b)n. The theorem is a consequence of (64).

Let k be a positive real number and n be a heavy, positive real number. Let
us observe that (k + 1)n − kn is heavy and positive.

Let k be a heavy, positive real number and n be a non negative real number.
One can verify that kn+1 − kn is positive.

Now we state the propositions:

(66) Let us consider a positive real number k, and a heavy, positive real
number n. Then (k+ 1)n > kn+ 1. The theorem is a consequence of (65).

(67) Let us consider positive real numbers a, b, and a light, positive real
number n. Then an+ bn > (a+ b)n. The theorem is a consequence of (64).

(68) Let us consider a positive real number k, and a light, positive real number
n. Then (k + 1)n < kn + 1. The theorem is a consequence of (67).

(69) Let us consider a positive real number k, and a non positive real number
n. Then (k + 1)n < kn + 1.

(70) Let us consider positive real numbers a, b, and a non positive real number
n. Then an + bn > (a+ b)n. The theorem is a consequence of (69).

Let us consider positive real numbers a, b and a real number n. Now we
state the propositions:

(71) (a+ b)n > an+ bn if and only if n is heavy and positive. The theorem is
a consequence of (1), (67), (70), and (65).

(72) (a+ b)n = an + bn if and only if n = 1. The theorem is a consequence of
(71), (70), and (67).

(73) (a+ b)n < an + bn if and only if n < 1. The theorem is a consequence of
(1), (71), and (72).

Let us consider positive real numbers a, b, c. Now we state the propositions:

(74) (a+ b) · (a+ c) > a · (a+ b+ c).

(75) a+b+c
a+b <

a+c
a . The theorem is a consequence of (74).
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(76) Let us consider positive real numbers a, b, c, and a positive real number
n. Then (a+b+c)

n

(a+b)n <
(a+c)n

an . The theorem is a consequence of (75).

(77) Let us consider heavy, positive real numbers a, b. Then a+ b− 1 > ab >
1

a+b−1 . The theorem is a consequence of (1).

(78) Let us consider positive real numbers a, b, c. Then a+b+ca > a+ba+c >
a

a+b+c .
The theorem is a consequence of (77).

Let us consider a light, positive real number a and a heavy, positive real
number n. Now we state the propositions:

(79) (1 + a)n · (1− a)n < (1 + an) · (1− an). The theorem is a consequence of
(65).

(80) (1+a)n

1+an <
1−an
(1−a)n . The theorem is a consequence of (79).

Let us consider a light, positive real number a. Now we state the propositions:

(81) (i) max(a, 1− a) ­ 12 , and

(ii) min(a, 1− a) ¬ 12 .
(82) 1

1+a + 1
1−a > 2.

(83) Let us consider a heavy, positive real number a. Then 1
a+1 + 1

a−1 >
2
a .

(84) Let us consider positive real numbers a, b, and a heavy, positive real
number n. Then (2·a+b)n+bn < 2·(a+b)n. The theorem is a consequence
of (65).

(85) Let us consider heavy, positive real numbers a, n. Then (a+ 1)n − (a−
1)n > 2n. The theorem is a consequence of (65).

(86) Let us consider a light, positive real number a, and a heavy, positive
real number n. Then 2n > (1 + a)n − (1 − a)n > 2 · an. The theorem is
a consequence of (1) and (65).

(87) Let us consider heavy, positive real numbers a, n, and a light, positive
real number b. Then (a+ 1)n− (a− 1)n > (a+ b)n− (a− b)n > 2 · bn. The
theorem is a consequence of (1) and (65).

(88) Let us consider positive real numbers a, b, and a positive real number n.
Then 2 · (a+ b)n > (a+ b)n + an > 2 · (an).

Let us consider positive real numbers a, b. Now we state the propositions:

(89) If a 6= b, then there exist real numbers n, m such that a = a
b
n and

b = a
b
m.

(90) If a 6= b, then there exist real numbers n,m such that a−b = a
b
n·(ab

m−1).
The theorem is a consequence of (89).

(91) Let us consider positive real numbers a, m, n. Then an+am = amin(n,m) ·
(1 + a|m−n|).
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(92) Let us consider non weightless, positive real numbers a, b. Then loga b =
1
logb a

. The theorem is a consequence of (1).

Let a be a heavy, positive real number and b be a positive real number. One
can check that loga(a+ b) is heavy and loga+b a is light.

Now we state the propositions:

(93) Let us consider a positive, non weightless real number a, and a positive
real number b. Then loga b = 0 if and only if b = 1.
Proof: |a| 6= 1. If loga b = 0, then b = 1. �

(94) Let us consider a non weightless, positive real number a, and a positive
real number b. Then loga b = 1 if and only if a = b. The theorem is
a consequence of (1).

(95) Let us consider positive real numbers a, b, and a non zero real number
n. Then an = bn if and only if a = b.
Proof: If a 6= b, then an 6= bn. �

(96) Let us consider a non weightless, positive real number a, and a positive
real number b. Then

(i) loga b = −log 1
a
b, and

(ii) log 1
a
b = loga

1
b , and

(iii) loga b = −loga
1
b , and

(iv) loga b = log 1
a

1
b .

The theorem is a consequence of (1).

(97) Let us consider a heavy, positive real number a, and a positive real
number b. Then a > b if and only if loga b < 1.
Proof: a > 1. If loga b < 1, then a > b. If a > b, then loga b < 1. �

(98) Let us consider a light, positive real number a, and a positive real number
b. Then a < b if and only if loga b < 1. The theorem is a consequence of
(97) and (96).

(99) Let us consider a heavy, positive real number a, and a positive real num-
ber b. Then a < b if and only if loga b > 1. The theorem is a consequence
of (97) and (94).

(100) Let us consider a light, positive real number a, and a positive real number
b. Then a > b if and only if loga b > 1. The theorem is a consequence of
(99) and (96).

Let us consider non weightless, positive real numbers a, b. Now we state the
propositions:

(101) If loga b ­ 1, then 0 < logb a ¬ 1. The theorem is a consequence of (92).
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(102) If loga b ¬ −1, then 0 > logb a ­ −1. The theorem is a consequence of
(92).

Let us consider heavy, positive real numbers a, b. Now we state the propo-
sitions:

(103) If loga b > logb a ­ 1, then a > b. The theorem is a consequence of (1).

(104) If logb a < 1, then a < b. The theorem is a consequence of (1) and (94).

Let us consider heavy, positive real numbers a, c and positive real numbers
b, d. Now we state the propositions:

(105) If loga b ¬ logc d and a < b, then c < d. The theorem is a consequence
of (99).

(106) If loga b ­ logc d and a > b, then c > d. The theorem is a consequence
of (97).

Let us consider a heavy, positive real number a, a light, positive real number
c, and positive real numbers b, d. Now we state the propositions:

(107) If loga b ¬ logc d and a < b, then c > d. The theorem is a consequence
of (99) and (100).

(108) If loga b ­ logc d and a > b, then c < d. The theorem is a consequence
of (97) and (98).

Let us consider light, positive real numbers a, c and positive real numbers
b, d. Now we state the propositions:

(109) If loga b ¬ logc d and a > b, then c > d. The theorem is a consequence
of (96) and (105).

(110) If loga b ­ logc d and a < b, then c < d. The theorem is a consequence
of (96) and (106).

Let us consider a light, positive real number a, a heavy, positive real number
c, and positive real numbers b, d. Now we state the propositions:

(111) If loga b ¬ logc d and a > b, then c < d. The theorem is a consequence
of (100) and (99).

(112) If loga b ­ logc d and a < b, then c > d. The theorem is a consequence
of (98) and (97).

Let us consider heavy, positive real numbers a, c and positive real numbers
b, d. Now we state the propositions:

(113) If loga b < logc d and a ¬ b, then c < d. The theorem is a consequence
of (97) and (99).

(114) If loga b ¬ logc d and a ¬ b, then c ¬ d. The theorem is a consequence
of (97).

(115) Let us consider positive real numbers a, b. If a > b, then log a
b
a > log a

b
b.
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